Skip to main content
Log in

THE IMPACT OF INSTITUTIONAL CHOICE AND ENVIRONMENTS ON AFRICAN-AMERICAN AND WHITE STUDENTS' DEGREE EXPECTATIONS

  • Published:
Research in Higher Education Aims and scope Submit manuscript

Abstract

This study examines the effects of individualcharacteristics, institutional characteristics andexperiences, and financial aid measures onAfrican-American and white college students' degreeaspirations. The main theoretical foundations for this studyare the status attainment models developed in the early1970s and Weidman's (1989) model of undergraduatesocialization. The study used the BeginningPostsecondary Students (BPS:90/92) data set, and the findingsshow that regression models between the two groups havemany similarities: Students' aspirations are mostly theresult of socioeconomic factors, initial degree aspirations, and institutional characteristics.Financial aid measures are not significant predictors ofaspirations for African-American students, although workstudy awards and fewer hours per week spent working significantly affect white students'aspirations. There are quite a few differences betweenthe groups' regression models. For instance,intellectual selfconfidence has opposite effects onaspirations for African-American and white students.African-American enrollment and faculty contactpositively affect AfricanAmerican students' aspirations,while tuition cost and peer contact have positiveeffects on white students' aspirations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nat. Research Council, Environmental.Public Health and Hazardous Wastes, Nat. Ac. Press, Washington D.C. (1993).

    Google Scholar 

  2. C. C. Travis and H. A. Hattemer-Frey, Health Effects of Municipal Waste Incineration. CRC Press, Boca Raton, Fla (1991).

    Google Scholar 

  3. C. R. Dempsey and E. T. Oppelt, Incineration of Hazardous Waste:ACritical Review Update, J.AirWaste Manage.Assoc. 43, 25–73 (1993).

    Google Scholar 

  4. M. Gochfeld, Incineration: Health and Environmental Consequences, Mount Sinai J.Med. 62, 365–374 (1995).

    Google Scholar 

  5. L. Morselli, S. Zappoli, and S. Militerno, The Presence and Distribution of Heavy Metals in Municipal Solid Waste Incinerators, Toxicol.Environ.Chem. 37, 139–145 (1993).

    Google Scholar 

  6. R. Sedman and J. Esperza, Evaluation of the Public Health Risks Associated with Semi Volatile Metals and Dioxin Emissions from Hazardous Waste Incinerators, Environ.Health Perspect. 94, 181–187 (1991).

    Google Scholar 

  7. C. Rappe, Sources of Exposure, Environmental Concentrations and Exposure Assessment of PCDD and PCDF, Chemosphere 27, 211–225 (1993).

    Google Scholar 

  8. H. Fiedler, Sources of PCDD/PCDF and Impact on the Environment, Chemosphere 32, 55–64 (1996).

    Google Scholar 

  9. P. Elliot, G. Shaddick, I. Kleinschmidt et al., Cancer Incidence Near Municipal Solid Waste Incinerators in Great Britain, Br.J.Cancer 73, 702–710 (1996).

    Google Scholar 

  10. C. M. Shy, D. Degnan, D. C. Fox et al., Do Waste Incinerators Induce Adverse Respiratory Effects? An AirQuality and Epidemiological Study in Six Communities, Environ.Health Perspect. 103, 714–724 (1995).

    Google Scholar 

  11. V. T. Covello and M. W. Merkhofer, Risk Assessment Methods.Approaches for Assessing Health and Environmental Risks, Plenum Press, New York (1993).

    Google Scholar 

  12. A. Levin, D. B. Fratt, A. Leonard, R. J. F. Bruins, and L. Fradkin, Comparative Analysis of Health Risk Assessments for Municipal Waste Combustors,J.AirWaste Manage.Assoc. 41, 20–31 (1991).

    Google Scholar 

  13. W. H. Hallenbeck, S. P. Breen, and G. R. Brenniman, Cancer Risk Assessment for the Inhalation of Metals from Municipal Solid Waste Incinerators Impacting Chicago, Bull.Environ.Contam.Toxicol. 51, 165–170 (1993).

    Google Scholar 

  14. W. H. Hallenbeck, Health Impact of a Proposed Waste-to-Energy Facility in Illinois, Bull.Environ.Contam.Toxicol. 54, 342–348 (1995).

    Google Scholar 

  15. T. Eickman, Environmental Toxicological Assessment of Emissions from Waste Incinerators, Fresenius Environ.Bull. 3, 244–249 (1993).

    Google Scholar 

  16. A. C. Cullen, The Sensitivity of Probabilistic Risk Assessment Results to Alternative Model Structures: A Case Study of Municipal Waste Incineration, J.Air Waste Manage.Assoc. 45, 538–546 (1995).

    Google Scholar 

  17. W. M. Schaub, Mercury Emissions from MSW Incinerators: An Assessment of the Current Situation in the United States and Forecast of Future Emissions, Resources, Conserv.Recycl. 9, 31–59 (1993).

    Google Scholar 

  18. EPA, Guidelines for Exposure Assessment; Notice. Part II, Federal Register, 57, 104, 22888–22938 (1992).

    Google Scholar 

  19. F. Balducci, O. Grandamas, and D. Zmirou, Polair: Logiciel et guide me´thodologique pour l'investigation e´pide´miologique d'une pollution atmosphe´rique ponctuelle, Rev.Epidem.Sante´ Pub. 43, 594–603 (1995).

    Google Scholar 

  20. B. Crabol and M. Montfort, </del>Pre´sentation du code de calcul ICAIR3C. de dispersion passive de polluants dans l'atmosphe're. Note technique, IPSN, Fontenay aux Roses, France (1992).

    Google Scholar 

  21. EPA, Guiding Principles for Monte-Carlo Analysis. EPA/630/ R-97/001, Washington D.C. (March 1997).

  22. EPA, Proposed Guidelines for Carcinogenic Risk Assessment; Notice; Part II. Federal Register, 61, 79, 17960–18010 (1996).

    Google Scholar 

  23. ATSDR, Toxicological Profile for Benzene (update). U.S. Department of Health and Human Services Public Health Service, ATSDR, Atlanta (1996).

    Google Scholar 

  24. ATSDR, Toxicological Profile for Nickel (update). U.S. Department of Health and Human Services Public Health Service, ATSDR, Atlanta (1996).

    Google Scholar 

  25. IARC, Cadmium and Certain Cadmium Compounds. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry, IARC Monographs, vol 58, Lyon, France p 119–146, 210–236 (1993).

    Google Scholar 

  26. ATSDR, Toxicological Profile for 1.1.1 Trichloroethane (update). US. Department of Health and Human Services Public Health Service, ATSDR, Atlanta (1995).

    Google Scholar 

  27. WHO, Air Quality Guidelines for Europe. European Epi Marker, Kracow, Poland. (April 1997, the final publication of the WHO-Euro guidelines is pending).

    Google Scholar 

  28. C. C. Travis and B. P. Blaylock, Validation of a Terrestrial Food Chain Model, J.Expos.Anal.Environ.Epidemiol. 2, 221–239 (1992).

    Google Scholar 

  29. R. M. Sedman, J. M. Polisini, and J. R. Esperza, TheEvaluation of Stack Metal Emissions from Hazardous Waste Incinerators: Assessing Human Exposure Through Noninhalation Pathways, Environ.Health Perspect. 102 (sup2), 105–112 (1994).

    Google Scholar 

  30. M. Schummacher, S. Granero, M. Belles, J. M. Llobet, and J. L. Domingo, Levels of Metals in Soils and Vegetation in the Vicinity of a Municipal Solid Waste Incinerator, Toxicol.Environ.Chem., 119–132 (1996).

  31. B. D. Eitzer, Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Raw Milk Samples from Farms Located Near a New Resource Recovery Incinerator, Chemosphere 30, 1237–1248 (1995).

    Google Scholar 

  32. E. Demi, I. Mamgelsfdorf, and H. Greim, Chlorinated Dibenzodioxins and Dibenzofurans (PCDD/F) in Blood and Human Milk of Non Occupationally Exposed Persons Living in the Vicinity of a Municipal Waste Incinerator, Chemosphere 33, 1941–1950 (1996).

    Google Scholar 

  33. K. L. Hentz, S. W. Pirages, and K. A. Williams, Differences in Indirect Risk Methodologies: Dioxin Emissions from Combustion Facilities, Regulatory Toxicology and Pharmacology 20, 83–95 (1994).

    Google Scholar 

  34. H. Greim, Toxicological Evaluation of Emissions from Modern municipal Waste Incinerators, Chemosphere 20(3/4), 317–331 (1990).

    Google Scholar 

  35. C. S. Krivanek, Mercury Control Technologies for MWCS— The Unanswered Questions, Journal of Hazardous Material 47, 119–136 (1996).

    Google Scholar 

  36. NRC, Human Exposure Assessment for Airborne Pollutants: Advances and Opportunities, National Academy of Sciences, 321 pages, Washington D.C. (1991).

    Google Scholar 

  37. E. T. Oppelt, Air Emissions from the Incineration of Hazardous Waste, Toxicol.Indust.Health 6, 23–51 (1990).

    Google Scholar 

  38. IRIS, Integrated Risk Information System, US-EPA, Washington D.C. (1996).

    Google Scholar 

  39. J. D. Kilgroe, Control of Dioxin, Furan, and Mercury Emissions from Municipal Waste Combustor, Journal of Hazardous Material 47, 163–194 (1996).

    Google Scholar 

  40. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Volume 69: Polychlorinated Dibenzopara-Dioxins and Polychlorinated Dibenzofurans, IARC, Lyon, France (1997).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, D.F. THE IMPACT OF INSTITUTIONAL CHOICE AND ENVIRONMENTS ON AFRICAN-AMERICAN AND WHITE STUDENTS' DEGREE EXPECTATIONS. Research in Higher Education 40, 17–41 (1999). https://doi.org/10.1023/A:1018770210560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018770210560

Keywords

Navigation