Skip to main content
Log in

Spinor Matter in a Gravitational Field: Covariant Equations à la Heisenberg

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A fundamental tenet of general relativity is geodesic motion of point particles. For extended objects, however, tidal forces make the trajectories deviate from geodesic form. In fact Mathisson, Papapetrou, and others have found that even in the limit of very small size there exists a residual curvature-spin force. Another important physical case is that of field theory. Here the ray (WKB) approximation may be used to obtain the equation of motion. In this article I consider an alternative procedure, the proper time translation operator formalism, to obtain the covariant Heisenberg equations for the quantum velocity, momentum, and angular momentum operators for the case of spinor fields. I review the flat spacetime results for Dirac particles in Yang-Mills fields, where we recover the Lorentz force. For curved spacetime I find that the geodesic equation is modified by an additional term involving the spin tensor, and the parallel transport equation for the momentum is modified by an additional term involving the curvature tensor. This curvature term is the “Lorentz force” of the gravitational field. The main result of this article is that these equations are exactly the (symmetrized) Mathisson-Papapetrou equations for the quantum operators. Extension of these results to the case of spin-one fields may be possible by use of the KDP formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Mathisson, Acta Phys. Pol. 6, 163 (1937).

    Google Scholar 

  2. A. Papapetrou, Proc. Roy. Soc. London A 209, 248 (1951).

    Google Scholar 

  3. F. A. E. Pirani, Acta Phys. Pol. 15, 389 (1956).

    Google Scholar 

  4. W. G. Dixon, Proc. Roy. Soc London A 314, 499 (1970); 319, 509 (1970); Gen. Relat. Gravit. 4, 199 (1973); Philos. Trans. Roy. Soc. London A 277, 59 (1974).

    Google Scholar 

  5. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973), pp. 570-577, and references therein.

    Google Scholar 

  6. J. Audretsch, J. Phys. A: Math. Gen. 14, 411 (1981); Phys. Rev. D 24, 1470 (1981).

    Google Scholar 

  7. R. Rudiger, Proc. Roy. Soc. London A 377, 417 (1981).

    Google Scholar 

  8. R. Spinosa, Class. Quantum Gravit. 4, 473 (1986); Ann. Phys. ( Leipzig ) 46, 179 (1989); Class. Quantum Gravit. 4, 1799 (1987).

    Google Scholar 

  9. M. Seitz, Class. Quantum Gravit. 3, 1265 (1986).

    Google Scholar 

  10. H. Hönl and A. Papapetrou, Z. Phys. 112, 512 (1939); 114, 478 (1939); 116, 153 (1940).

    Google Scholar 

  11. E. Corinaldesi and A. Papapetrou, Proc. Roy. Soc. London A 209, 259 (1951).

    Google Scholar 

  12. J. Schwinger, Phys. Rev. 82, 669 (1951).

    Google Scholar 

  13. V. Fock, Phys. Z. Sov. U. 12, 404 (1937).

    Google Scholar 

  14. Y. Nambu, Prog. Theor. Phys. 5, 82 (1950).

    Google Scholar 

  15. G. Szamosi, Nuovo Cimento 20, 1090 (1961).

    Google Scholar 

  16. A. O. Barut, A. J. Bracken, and W. D. Thacker, Lett. Math. Phys. 8, 477 (1984); A. O. Barut and W. D. Thacker, Phys. Rev. D 31, 1386 (1985); Phys. Rev. D 31, 2076 (1985).

    Google Scholar 

  17. H. Rumpf, in Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity, P. Bergman and V. deSabbata, eds. ( Plenum, New York, 1980), pp. 93-104.

    Google Scholar 

  18. J. Anandan, Nuovo Cimento A 53, 221 (1979).

    Google Scholar 

  19. See for example: A Messiah, Quantum Mechanics, Vol. I (Wiley, New York, 1958), p. 70; L. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), p. 176.

    Google Scholar 

  20. E. Schrodinger, Sitzungsber. Akad. Phys. 57, 261 (1929).

    Google Scholar 

  21. H. Weyl, Z. Phys. 56, 330 (1929).

    Google Scholar 

  22. V. Fock and D. Ivanenko, C. R. Acad Sci. (Paris) 188, 1470 (1929).

    Google Scholar 

  23. R. Utiyama, Phys. Rev. 101, 1597 (1956).

    Google Scholar 

  24. T. W. B. Kibble, J. Math. Phys. 2, 212 (1961).

    Google Scholar 

  25. D. W. Sciama, in Recent Developments in General Relativity (Permagon, Oxford, 1962).

    Google Scholar 

  26. J. P. Crawford, in Clifford (Geometric) Algebras with Applications to Physics, Mathematics, and Engineering, W. E. Baylis, ed. (Birkhaäuser, Boston, 1996), Chaps. 23 and 24; see also Adv. Appl. Clifford Alg. 2, 75 (1992).

    Google Scholar 

  27. N. Kemmer, Helv. Phys. Acta 10, 47 (1937); Proc. Roy. Soc. London A 166, 127 (1938); Proc. Cambridge Philos. Soc. 34, 354 (1938). R. J. Duffin, Phys. Rev. 54, 1114 (1938); Phys. Rev. 77, 683 (1950). A. Proca, J. Phys. Radium 7, 347 (1936); 9, 61 (1938).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, J.P. Spinor Matter in a Gravitational Field: Covariant Equations à la Heisenberg. Foundations of Physics 28, 457–470 (1998). https://doi.org/10.1023/A:1018768128810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018768128810

Keywords

Navigation