Skip to main content
Log in

Ising Models on Hyperbolic Graphs II

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider Ising models with ferromagnetic interactions and zero external magnetic field on the hyperbolic graph ℋ(vf), where v is the number of neighbors of each vertex and f is the number of sides of each face. Let T c be the critical temperature and T c =sup〈TT c:ν f=(ν ++ν )/2〉, where ν f is the free boundary condition (b.c.) Gibbs state, ν + is the plus b.c. Gibbs state and ν is the minus b.c. Gibbs state. We prove that if the hyperbolic graph is self-dual (i.e., v=f) or if v is sufficiently large (how large depends on f, e.g., v≥35 suffices for any f≥3 and v≥17 suffices for any f≥17) then 0<T c <T c, in contrast with that T c =T c for Ising models on the hypercubic lattice Z d with d≥2, a result due to Lebowitz.(22) While whenever T<T c , ν f=(ν ++ν )/2. The last result is an improvement in comparison with the analogous statement in refs. 28 and 33, in which it was only proved that ν f=(ν ++ν )/2 when TT c and it remains to show in both papers that ν f=(ν ++ν )/2 whenever T<T c . Therefore T c and T c divide [0, ∞] into three intervals: [0, T c ), (T c T c), and (T c, ∞] in which ν +ν but ν f=(ν ++ν )/2, ν +ν and ν f≠(ν ++ν )/2, and ν +=ν , respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman, Translation invariance and instability of phase coexistence in the two dimensional Ising system, Commun. Math. Phys. 73:83–94 (1980).

    Google Scholar 

  2. M. Aizenman, J. Chayes, L. Chayes, and C. M. Newman, x-y 2 Ising and Potts models, J. Stat. Phys. 50:1–40 (1988).

    Google Scholar 

  3. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant percolation on graphs, Geom. Func. Analysis 9:29–66 (1999).

    Google Scholar 

  4. I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Critical percolation on any non-amenable group has no infinite clusters, Ann. Probab., to appear.

  5. I. Benjamini and O. Schramm, Percolation beyond Z d, many questions and a few answers, Electronic Commun. Probab. 1:71–82 (1996).

    Google Scholar 

  6. I. Benjamini and O. Schramm, Percolation in the hyperbolic plane, preprint.

  7. I. Benjamini and O. Schramm, Recent progress on percolation beyond Z d. http://www. wisdom.weizmann.ac.il/ schramm/papers/pyond-rep/index.html.

  8. R. M. Burton and M. Keane, Density and uniqueness in percolation, Commun. Math. Phys. 121:501–505 (1989).

    Google Scholar 

  9. R. L. Dobrushin, Gibbs state describing coexistence of phases for a three-dimensional Ising model, Theory Probab. Appl. 17:582–600 (1972).

    Google Scholar 

  10. B. Dudo, R. Scheib, and C. C. Wu, Growth rates of some planar graphs—an application of Mathematica, in preparation.

  11. C. M. Fortuin, On the random cluster model. III. The simple random cluster model, Physica 59:545–570 (1972).

    Google Scholar 

  12. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model. I. Introduction and relation to other models, Physica 57:536–564 (1972).

    Google Scholar 

  13. G. Gallavotti and S. Miracle-Sole, Equilibrium states of the Ising model in the two phase region, Phys. Rev. B 5:2555–2559 (1972).

    Google Scholar 

  14. G. R. Grimmett, The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Probab. 23:1461–1510 (1995).

    Google Scholar 

  15. G. R. Grimmett and C. M. Newman, Percolation in ∞+1 dimensions, in Disorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds. (Clarendon Press, Oxford, 1990), pp. 167–190.

    Google Scholar 

  16. O. Häggström, J. Jonasson, and R. Lyons, Explicit isoperimetric constants, phase transitions in the random-cluster and Potts models, and Bernoullicity, preprint.

  17. O. Häggström and Y. Peres, Monotonicity of uniqueness for percolation on Cayley graphs: All infinite clusters are born simultaneously, Probab. Th. Rel. Fields 113:273–285 (1999).

    Google Scholar 

  18. Y. Higuchi, On the absence of non-translation invariant Gibbs states for the two dimen-sional Ising model, in Random Fields (Esztergom, 1979), J. Fritz, J. L. Lebowitz and D. Szsz, eds. (Amsterdam, North-Holland, 1981), Vol. I, pp. 517–534.

    Google Scholar 

  19. J. Jonasson, The random cluster model on a general graph and a phase transition charac-terization of nonamenability, Stoch. Proc. Appl. 79:335–354 (1999).

    Google Scholar 

  20. J. Jonasson and J. Steif, Amenability and phase transition in the Ising model, J. Theor. Probab., to appear.

  21. S. Lalley, Percolation on Fuchsian groups, Ann. Inst. H. Poincaré, Probab. Stat. 34: 151–178 (1998).

    Google Scholar 

  22. J. L. Lebowitz, Coexistence of phases in Ising ferromagnets, J. Stat. Phys. 16:463–476 (1977).

    Google Scholar 

  23. R. Lyons, Random walks and the growth of groups, C.R. Acad. Sci. Paris Se_ r. I Math. 320:1361–1366 (1995).

    Google Scholar 

  24. R. Lyons and Y. Peres, Probability on Trees and Networks. Book in preparation, draft available at URL http://php.indiana.edu/~rdlyons.

  25. R. Lyons and O. Schramm, Indistinguishability of percolation clusters, Ann. Probab., to appear.

  26. B. Mohar, Isoperimetric inequalities, growth, and the spectrum of graphs, Linear Algebra Appl. 103:119–131 (1988).

    Google Scholar 

  27. C. M. Newman and L. S. Schulman, Infinite clusters in percolation models, J. Stat. Phys. 26:613–628 (1981).

    Google Scholar 

  28. C. M. Newman and C. C. Wu, Markov fields on branching planes, Probab. Th. Rel. Fields. 85:539–552 (1990).

    Google Scholar 

  29. R. Rietman, B. Nienhuis, and J. Oitmaa, The Ising model on hyperlattices, J. Phys. A: Math. Gen. 25:6577–6592 (1992).

    Google Scholar 

  30. R. H. Schonmann, Stability of infinite clusters in supercritical percolation, Probab. Th. Rel. Fields 113:287–300 (1999).

    Google Scholar 

  31. R. H. Schonmann, Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs, preprint.

  32. C. M. Series and Y. G. Sinai, Ising models on the Lobachevsky plane, Commun. Math. Phys. 128:63–76 (1990).

    Google Scholar 

  33. C. C. Wu, Ising models on hyperbolic graphs, J. Stat. Phys. 85:251–259 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C.C. Ising Models on Hyperbolic Graphs II. Journal of Statistical Physics 100, 893–904 (2000). https://doi.org/10.1023/A:1018763008810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018763008810

Navigation