Skip to main content
Log in

Analysis of Background-Dependent Genetic Interactions Without Inbred Strains

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Experimental analysis of background dependenteffects of genetic interactions can be designed usingstrains generated by introgression of small geneticregions containing identical genotypes at loci in question into different inbred strains. We usea novel multilocus paradigm, denoted conditionalintergenic functional association (CIFA), to simulatethis procedure, with the trade-off of power forconvenience that is affordable when sufficiently strongeffects are present. We analyze nine enzyme loci atthree chromosomes in groups of D. melanogasterwith different developmental rates that showed similarallelic frequencies at individual loci. Resultsobtained suggest the presence of adaptive interactionbetween particular alleles at two loci when geneticvariation at seven background loci is eliminated.Biochemical considerations show that, in the resultingdevelopmental context, strong interaction between thesegenes may emerge from shifted control of the pentosephosphate pathway, with cascading effects on theglycolysis, TCA cycle, and biosynthetic pathways: one genemay assume control of the irreversible rate-limitingstep in the pentose phosphate pathway, whereas the othergene may assume control of the NADP+ levelthat regulates the same rate-limiting step as anelectron acceptor. The newly developing functionalgenomics research and the absence of inbreeding makeCIFA directly applicable to complex human traits inlarge samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  • Barnes, P. T., and Laurie-Ahlberg, C. C. (1986). Genetic variability of flight metabolism in Drosophila melanogaster: Effect of allozymes and environmental temperature on power output. Genetics 112:267.

    Google Scholar 

  • Barnes, P. T., Holland, B., and Courreges, V. (1989). Genotype by environment and epistatic interactions in Drosophila melanogaster: The effects of Gpdh allozymes, genetic background and rearing temperature on larval developmental time and viability. Genetics 122:859.

    Google Scholar 

  • Cavener, D. R. (1983). The response of enzyme polymorphisms to developmental rate selection in Drosophila melanogaster. Genetics 105:105.

    Google Scholar 

  • Cavener, D. R., and Clegg, M. T. (1981). Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 78:4444.

    Google Scholar 

  • Choudhary, M., and Laurie, C. C. (1991). Use of in vitro mutagenesis to analyze the molecular basis of the difference in Adh expression associated with the allozyme polymorphism in Drosophila melanogaster. Genetics 129:481.

    Google Scholar 

  • Church, R. B., and Robertson, F. W. (1966). Biochemical analysis of genetic differences in the growth of Drosophila. Genet. Res. 7:383.

    Google Scholar 

  • Clark, A. B. (1983). Cytogenetic localization by variation in electrophoretic allozyme phenotype: Drosophila Odh. Biochem. Genet. 21:375.

    Google Scholar 

  • Geer, B. W., McKechnie, S. W., and Langevin, M. L. (1983). Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. J. Nutr. 113:1632.

    Google Scholar 

  • Geer, B. W., Langevin, M. L., and McKechnie, S. W. (1985). Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochem. Genet. 23:607.

    Google Scholar 

  • Genetic Maps, 6th ed. (1993).

  • Guo, S. W., and Thompson, E. A. (1989). Analysis of sparse contingency tables: Monte Carlo estimation of exact P-values, Technical Report No. 187, Department of Statistics, University of Washington, Seattle.

    Google Scholar 

  • Johnson, F. M., and Schaffer, H. E. (1973). Isozyme variability in species of the genus drosophila. VII. Genotype—environment relationships in populations of D. melanogaster from the eastern United States. Biochem. Genet. 10:149.

    Google Scholar 

  • Knibb, W. R., Quakeshott, J. G., and Wilson, S. R. (1983). Chromosome inversion polymorphisms in Drosophila melanogaster. IV. Inversion and allele frequency changes under selection for different development times. Heredity 59:95.

    Google Scholar 

  • Lee, Y. M., Misra, H. P., and Ayala, F. J. (1981). Superoxide dismutase in Drosophila melanogaster: Biochemical and structural characterization of allozyme variants. Proc. Natl. Acad. Sci. USA 78:7052.

    Google Scholar 

  • Lewontin, R. C. (1965). In Bauer, H. G., and Stebbins, G. L. (eds.), The Genetics of Colonizing Species, Academic Press, New York, pp. 77-94.

    Google Scholar 

  • Marinkovic, D., and Ayala, F. J. (1975a). Fitness of allozyme variants in Drosophila pseudoobscura. I. Selection at the Pgm-1 and Me-2 loci. Genetics 79:85.

    Google Scholar 

  • Marinkovic, D., and Ayala, F. J. (1975b). Fitness of allozyme variants in Drosophila pseudoobscura. II. Selection at the Est-5, Odh and Mdh-2 loci. Genet. Res. 24:137.

    Google Scholar 

  • Marinkovic, D., and Ayala, F. J. (1986a). Genetic variation for rate of development in natural populations of Drosophila melanogaster. Genetica 71:123.

    Google Scholar 

  • Marinkovic, D., and Ayala, F. J. (1986b). Selection for different rates of embryonic development in Drosophila melanogaster and D. simulans. Genetica 18(3):181.

    Google Scholar 

  • Marinkovic, D., Milosevic, M., and Milanovic, M. (1986). Enzyme activity and dynamics of Drosophila development. Genetica 70:43.

    Google Scholar 

  • Marinkovic, D., Tucic, N., Moya, A., and Ayala, F. J. (1987). Genetic diversity and linkage disequilibrium in Drosophila melanogaster with different rates of development. Genetics 117:513.

    Google Scholar 

  • Miller, S., Pearcy, R. W., and Berger, E. (1975). Polymorphism at the alpha-glyceropho sphate dehydrogenase locus in Drosophila melanogaster. I. Properties of adult allozymes. Biochem. Genet. 13:175.

    Google Scholar 

  • Moser, D., Johnson, L., and Lee, C. Y. (1980). Multiple forms of Drosophila hexokinase: Purification, biochemical and immunological characterization. J. Biol. Chem. 255:4673.

    Google Scholar 

  • Prakash, R., and Jyoutsna, G. M. S. (1988). Population and biochemical analysis of acid phosphatase allozymes in Drosophila takahashii. Proc. Natl. Acad. Sci. India Sect. B (Biol. Sci.) 58(3):365 (abstract).

    Google Scholar 

  • Tripia, G., Loverre, A., and Catamo, A. (1976). Thermostability studies for investigating nonÜ electrophoretic polymorphic alleles in Drosophila melanogaster. Nature 260:42.

    Google Scholar 

  • Xinmin, L. (1992). Synergistic effect of Adh alleles in Drosophila melanogaster. Proc. R. Soc. Lond. B 247:9.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovac, I., Marinkovic, D. Analysis of Background-Dependent Genetic Interactions Without Inbred Strains. Biochem Genet 37, 23–40 (1999). https://doi.org/10.1023/A:1018761916601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018761916601

Navigation