Skip to main content
Log in

Evolution of the Amylase Isozymes in the Drosophila melanogaster Species Subgroup

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The relationship between the net charge ofmolecules and their mobility on electrophoresis wasanalyzed for Drosophila alpha-amylases. Most ofthe differences in electrophoretic mobility, 98.2%, canbe explained by the charge state. Therefore fivereference amino acid sites, which are informativeresidues for charge differences among amylase isozymes,were considered for the evolution of the isozymes in Drosophila melanogaster. Theamylase isozymes in D. melanogaster can beclassified into three groups, I (AMY1,AMY2, and AMY3-A), II(AMY3-B and AMY4), and III(AMY5, AMY6-A, andAMY6-B), based on the differences in the reference sites. The mostprimitive amylase in D. melanogaster was foundto belong to Group I, most likely the AMY2isozyme. Groups II and III could have been derived fromGroup I. These results were confirmed by the analysis of 38amino acid sites with charge differences inDrosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bahn, E. (1967). Crossing over in the chromosomal region determining amylase isozymes in Drosophila melanogaster. Hereditas 58:1.

    Google Scholar 

  • Barbadilla, A., King, L. M., and Lewontin, R. C. (1996). What does electrophoretic variation tell us about protein variation? Mol. Biol. Evol. 13:427.

    Google Scholar 

  • Brown, C. J., Aquadro, C. F., and Anderson, W. W. (1990). DNA sequence evolution of the amylase multigene family in Drosophila pseudoobscura. Genetics 126:131.

    Google Scholar 

  • Dainou, O. M. L., Cariou, J. M., Goux, J. M. and David, J. R. (1993). Amylase polymorphism in Drosophila melanogaster: Haplotype frequencies in tropical African and American populations. Genet. Sel. Evol. 25:133.

    Google Scholar 

  • Da Lage, J. L., Lemeunier, F., Cariou, M. L., and David, J. R. (1992). Multiple amylase genes in Drosophila ananassae and related species. Genet. Res. 5:85.

    Google Scholar 

  • Doane, W.W. (1967). Quantitation of amylases in Drosophila separated by acrylamide gel electrophoresis. J. Exp. Zool. 164:363.

    Google Scholar 

  • Doane, W. W. (1969a). Amylase variants in Drosophila melanogaster. Linkage studies and characterization of enzyme extracts. J. Exp. Zool. 171:321.

    Google Scholar 

  • Doane, W. W. (1969b). Drosophila amylase and problems in cellular differentiation. In Hanley, E. W. (ed.), RNA in Development, University of Utah Press, Salt Lake City.

    Google Scholar 

  • Hickey, D. A., Bally-Cuif, L., Abukashawa, S., Payant, V., and Benkel, B. F. (1991). Concerted evolution of duplicated protein-coding genes in Drosophila. Proc. Natl. Acad. Sci. USA 88:1611.

    Google Scholar 

  • Inomata, N., Shibata, H., Okuyama, E., and Yamazaki, T. (1995). Evolutionary relationships and sequence variation of α-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster. Genetics 141:237.

    Google Scholar 

  • Johnson, G. B. (1977). Evaluation of the stepwise mutation model of electrophoretic mobility: Comparison of the gel sieving behavior of alleles at the esterase-5 locus of Drosophila pseudoobscura. Genetics 87:139.

    Google Scholar 

  • Keith, T. P., Brooks, L. D., Lewontin, R. C., Martinez-Cruzado, J. C., and Rigby, D. L. (1985). Nearly identical distributions of xanthine dehydrogenase in two populations of Drosophila pseudoobscura. Mol. Biol. Evol. 2:206.

    Google Scholar 

  • Kikkawa, H. (1960). Further studies on the genetic control of amylase in Drosophila melanogaster. Jap. J. Genet. 35:382.

    Google Scholar 

  • Kikkawa, H. (1964). An electrophoretic study on amylase in Drosophila melanogaster. Jpn. J. Genet. 39:401.

    Google Scholar 

  • Kreitman, M. (1983). Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304:412.

    Google Scholar 

  • Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Lewontin, R. C., and Hubby, J. L. (1966). A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595.

    Google Scholar 

  • Magoulas, C., Loverre-Chyurlia, A., Abukashawa, S., Bally-Cuif, L., and Hickey, D. A. (1993). Functional conservation of a glucose-repressible amylase gene promoter from Drosophila virilis in Drosophila melanogaster. J. Mol. Evol. 36:234.

    Google Scholar 

  • Matsuo, Y., and Yamazaki, T. (1984). Genetic analysis of natural populations of Drosophila melanogaster in Japan. IV. Natural selection on the inducibility, but not on the structural genes, of amylase loci. Genetics 108:879.

    Google Scholar 

  • Matsuo, Y., and Yamazaki, T. (1986). Genetic analysis of natural populations of Drosophila melanogaster in Japan. VI. Differential regulation of duplicated amylase loci and degree of dominance of amylase activity in different environments. Jpn. J. Genet. 61:543.

    Google Scholar 

  • Matsuo, Y., and Yamazaki, T. (1997). Genetic factors on the second and third chromosomes responsible for the variation of amylase activity and inducibility in Drosophila melanogaster. Genet. Res. 70:97.

    Google Scholar 

  • Milanovic, M., and Andjelkovic, M. (1993). Biochemical and genetic diversity of alpha-amylase in Drosophila. Arch. Biol. Sci. Belgrade 45:63.

    Google Scholar 

  • Ohta, T., and Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22:201.

    Google Scholar 

  • Payant, V., Abukashawa, S., Sasseville, M., Benkel, B. F., Hickey, D. A., and David, J. (1988). Evolutionary conservation of the chromosomal configuration and regulation of amylase genes among eight species of the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 5:560.

    Google Scholar 

  • Popadic, A., and Anderson, W. W. (1995). Evidence for gene conversion in the amylase multigene family of Drosophila pseudoobscura. Mol. Biol. Evol. 12:564.

    Google Scholar 

  • Ramshaw, J. A. M., Coyne, J. A., and Lewontin, R. C. (1979). The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics 93:1019.

    Google Scholar 

  • Shibata, H., and Yamazaki, T. (1995). Molecular evolution of the duplicated Amy locus in the Drosophila melanogaster species subgroup: Concerted evolution only in the coding region and an excess of nonsynonymous substitutions in speciation. Genetics 141:223.

    Google Scholar 

  • Swofford, D. L. (1993). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Veuille, M., and King, L. M. (1995). Molecular basis of polymorphism at the esterase 5B locus in Drosophila pseudoobscura. Genetics 141:255.

    Google Scholar 

  • Yamazaki, T., and Matsuo, Y. (1984). Genetic analysis of natural populations of Drosophila melanogaster in Japan. III. Genetic variability of inducing factors of amylase and fitness. Genetics 108:223.

    Google Scholar 

  • Yamazaki, T., Matsuo, Y., Inoue, Y., and Matsuo, Y. (1984). Genetic analysis of natural populations of Drosophila melanogaster in Japan. I. Protein polymorphism, lethal gene, sterility gene, inversion plymorphism and linkage disequilibrium. Jpn. J. Genet. 59:33.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuo, Y., Inomata, N. & Yamazaki, T. Evolution of the Amylase Isozymes in the Drosophila melanogaster Species Subgroup. Biochem Genet 37, 289–300 (1999). https://doi.org/10.1023/A:1018755109757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018755109757

Navigation