Skip to main content
Log in

Apoptosis in the Estrous and Menstrual Cycles

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

In the absence of pregnancy, the adult mammarygland is subjected to cyclic fluctuations of hormonalstimulation that constitute the estrous and menstrualcycles. The mammary epithelium responds to these systemic hormonal changes by regionalproliferation, differentiation and cell death byapoptosis. The fact that the mammary epithelial responseinvolves only a minor subset of the epithelial cellsimplies a delicate local control of epithelial cellfate resulting in either cell death or survival.Evidence gleaned from descriptive data suggests that theapoptosis-related genes of the Bcl-2 gene family, tissue remodeling genes, protein tyrosine kinases andmaster genes of the homeotic gene cluster may beinvolved in determining epithelial cell fate during theestrous cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Going, T. J. Anderson, S. Battersby, and C. C. A. Macintyre (1988). Proliferative and secretory activity in human breast during natural and artificial menstrual cycles. Am. J. Pathol. 130:193–204.

    Google Scholar 

  2. C. S. Potten, R. J. Watson, G. T. Williams, S. Tickle, S. A. Roberts, M. Harris, and A. Howell (1988). The effect of age and menstrual cycle upon proliferative activity of the normal human breast. Brit. J. Cancer 58:163–170.

    Google Scholar 

  3. B. Vonderhaar (1988). Regulation of development of the normal mammary gland by hormones and growth factors. In M.E. Lippman, and R. Dickson (eds.), Breast Cancer: Cellular and Molecular Biology, Kluwer Academic Publishers, Boston,Dordrecht, London, pp. 251–266.

    Google Scholar 

  4. A.-C. Andres, G. Zuercher, V. Djonov, M. Flueck, and A. Ziemiecki (1995). Protein tyrosine kinase expression during the estrous cycle and carcinogenesis of the mammary gland. Int. J. Cancer 63:288–296.

    Google Scholar 

  5. J. A. Mol, E. van Garderen, G. R. Ruttemann, and A. Rijnberk (1996). New insights in the molecular mechanism of progestin-induced proliferation of mammary epithelium: Induction of the local biosynthesis of growth hormone (GH) in the mammary glands of dogs, cats and humans. J. Steroid Biochem. Mol. Biol. 57:67–71.

    Google Scholar 

  6. G. Soderqvist, E. Isaksson, B. von Schoultz, K. Carlstrom, E. Tani, and L. Skoog (1997). Proliferation of breast epithelial cells in healthy women during the menstrual cycle. Am. J. Obstet. Gynecol. 176:123–128.

    Google Scholar 

  7. H. Olsson, H. Jernstrom, P. Alm, H. Kreipe, C. Ingvar, P. E. Jonsson, and S. Ryden (1996). Proliferation of the human breast epithelium in relation to menstrual cycle phase, hormonal use, and reproductive factors. Br. Cancer Res. Treat. 40: 187–196.

    Google Scholar 

  8. K. Spanel-Borowski, V. Schmalz, S. Thor-Wiedemann, and C. Pilgrim (1984). Cell proliferation in the principal target organs of the dog (beagle) ovary during various periods of the estrous cycle. Acta Anat. 120:207–213.

    Google Scholar 

  9. J. L. Fendrick, A. M. Raafat, and S. Z. Haslam (1998). Mammary growth and development from the postnatal period to postmenopause: Ovarian steroid receptor ontogeny and regulation in the mouse. J. Mam. Gland Biol. Neoplasia 3:7–22.

    Google Scholar 

  10. S. A. Khan, M. A. Rogers, K. K. Khurana, M. M. Meguid, and P. J. Numann (1998). Estrogen receptor expression in benign breast epithelium and breast cancer risk. J. Natl. Cancer Inst. 90:37–42.

    Google Scholar 

  11. G. Soderqvist, B. von Schoultz, E. Tani, and L. Skoog (1993). Estrogen and progesterone receptor content in breast epithelial cells from healthy women during the menstrual cycle. Am. J. Obstet. Gynecol. 163:874–879.

    Google Scholar 

  12. T. K. Said, O. M. Conneely, D. Medina, B. W. O'Malley, and J. P. Lydon (1997). Progesterone, in addition to estrogen, induces cyclin D1 expression in the murine mammary epithelial cells, in vivo. Endocrinology 138:3933–3939.

    Google Scholar 

  13. P. Sicinski, J. L. Donaher, S. B. Parker, T. Li, A. Fazell, H. Gardner, S. Z. Haslam, R. T. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    Google Scholar 

  14. D. P. Ankrapp, J. M. Bennett, and S. Z. Haslam (1998). Role of epidermal growth factor in the acquisition of steroid hormone responsiveness in the normal mouse mammary gland. J. Cell Physiol. 174:251–260.

    Google Scholar 

  15. E. van Garderen, M. de Wit, W. F. Voorhout, G. R. Rutteman, J. A. Mol, H. Nederbagt, and W. Misdrop (1998). Expression of growth hormone in canine mammary tissue and mammary tumors. Evidence for a potential autocrine/paracr ine stimulatory loop. Am. J. Pathol. 150:1037–1047.

    Google Scholar 

  16. J. Xie and S. Z. Haslam (1997). extracellular matrix regulates ovarian hormone-dependen t proliferation of mouse mammary epithelial cells. Endocrinology 138:2466–2473.

    Google Scholar 

  17. G. W. Robinson, R. A. McKnight, G. H. Smith, and L. Hennighausen (1995). Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 121:2079–2090.

    Google Scholar 

  18. P. Guillamot, I. Sabbagh, J. Bertrand, and H. Cohen (1984). Prolactin receptors in the rat mammary gland. Change during the estrous cycle. Biochem. Biophys. Res. Comm. 123:612–617.

    Google Scholar 

  19. X. Liu, G. W. Robinson, and L. Hennighausen (1996). Activation of Stat 5a and Stat 5b by tyrosine phosphorylation is tightly linked to mammary differentiation. Mol. Endocrinol. 10: 1496–1506.

    Google Scholar 

  20. D. J. P. Ferguson and T. J. Anderson (1981). Morphological evaluation of cell turn over in relation to the menstrual cycle in the “resting” human breast. Brit. J. Cancer 44:177–181.

    Google Scholar 

  21. S. N. Farrow and R. Brown (1996). new members of the Bcl-2 family and their protein partners. Curr. Opin. Gene Dev. 6:45–49.

    Google Scholar 

  22. R. Jaeger, U. Hetzer, J. Schenkel, and H. Weiher (1997). Over-expression of Bcl-2 inhibits alveolar cell apoptosis during involution and accelerates c-myc induced tumorigenesis of the mammary gland in transgenic mice. Oncogene 15:1787–1795.

    Google Scholar 

  23. R. C. Humphreys, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajewski, J. C. Reed, and J. R. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022.

    Google Scholar 

  24. G. Ferrieres, M. Cuny, J. Simony-Lafontaine, J. Jacquemier, C. Rouleau, F. Guilleux, J. Grenier, P. Romanet, H. Pujol, P. Janteur, and C. Escot (1997). Variation of bcl-2 expression in breast ducts and lobules in relation to plasma progesterone levels: Overexpression and absence of variation in fibroadenomas. J. Pathol. 183:204–211.

    Google Scholar 

  25. J. C. Sabourin, A. Martin, J. Brauch, J. B. Truc, A. Gompel, and P. Poitout (1994). bcl-2 expression in normal breast tissue during the menstrual cycle. Int. J. Cancer 59:1–6.

    Google Scholar 

  26. K. Heermeier, M. Benedict, M. Li, P. Furth, G. Nunez, and L. Hennighausen (1996). Bax and Bcl-xs are induced at the onset of apoptosis in involuting mammary epithelial cells. Mech. Dev. 56:197–207.

    Google Scholar 

  27. R. Strange, F. Li, S. Saurer, A. Burckhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.

    Google Scholar 

  28. N. Kyprianou, H. F. English, and J. T. Isaacs (1990). Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res. 50: 3748–3753.

    Google Scholar 

  29. H. Yamanishi, N. Nonomura, A. Tanaka, T. Yasui, Y. Nishizawa, K. Matsumoto, and B. Sato (1990). Roles of transforming growth factor beta in inhibition of androgen induced growth of Shionogi carcinoma cells in serum-free medium. Cancer Res. 50:6179–6183.

    Google Scholar 

  30. N. Kyprianou, H. F. English, N. E. Davidson, and J. T. Isaacs (1991). Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 51:162–166.

    Google Scholar 

  31. S. B. Robinson, G. B. Silberstein, A. Roberts, K. C. Flanders, and D. W. Daniel (1991). Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary development. Development 113:867–878.

    Google Scholar 

  32. T. Miyashita and J. C. Reed (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.

    Google Scholar 

  33. M. Li, J. Hu, K. Heermeier, L. Hennighausen, and P. A. Furth (1996). Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53–independent pathways. Cell Growth Diff. 7:13–20.

    Google Scholar 

  34. C. M. Alexander, E. W. Howard, M. J. Bissell, and Z. Werb (1996). Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135:1669–1677.

    Google Scholar 

  35. R. Chiquet-Ehrismann, R. Kalla, C. A. Pearson, K. Beck, and M. Chiquet (1988). Tenascin interferes with fibronectin action. Cell 53:383–390.

    Google Scholar 

  36. J. E. Ferguson, A. M. Schor, A. Howell, and M. W. J. Ferguson (1990). Tebascin distribution in the normal breast is altered during the menstrual cycle and in carcinoma. Differentiation 42:199–207.

    Google Scholar 

  37. E. Aufderheide and P. Eckblom (1988). Tenascin during gut development. Appearance in the mesenchyme, shift in molecular forms and dependance on epithelial-mesenchymal interactions. J. Cell Biol. 105:599–608.

    Google Scholar 

  38. J. J. Wysolmerski, J. F. McCaughern-Carucci, A. G. Daifotis, A. E. Broadus, and W. M. Philbrick (1995). Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 121:3539–3547.

    Google Scholar 

  39. A.-C. Andres H. H. Reid, G. Zuercher, R. Blaschke, D. Albrecht, and A. Ziemiecki (1994). Expression of two novel eph-related receptor tyrosine kinases in mammary gland development and carcinogenesis. Oncogene 9:1461–1467.

    Google Scholar 

  40. E. B. Pasquale (1997). The Eph family of receptors. Curr. Opin. Cell Biol. 9:608–615.

    Google Scholar 

  41. M. Kessel and P. Gruss (1990). Murine developmental control genes. Science 249:374–379.

    Google Scholar 

  42. Y. Friedmann, C. A. Daniel, P. Strickland, and C. W Daniel (1994). Hox genes in normal and neoplastic mouse mammary gland. Cancer Res. 54:5981–5985.

    Google Scholar 

  43. J. Russo and I. H. Russo (1994). Toward a physiological approach to breast cancer prevention. Cancer Epidemiol. Biomarkers Prev. 3:353–364.

    Google Scholar 

  44. J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium during branching morphogenesis. Dev. Biol. 97:274–290.

    Google Scholar 

  45. G. Cepko and G. H. Smith (1997). Three division-competent, structurally-distinct cell populations contribute to mammary epithelial renewal. Tissue Cell 29:239–253.

    Google Scholar 

  46. J. E. Ferguson, A. M. Schor, A. Howell, and M. W. Ferguson (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tissue Res. 268: 167–177.

    Google Scholar 

  47. Y. Friedmann and C. W. Daniel (1996). Regulated expression of homeobox genes Msx-1 and Msx-2 in the mouse mammary gland development suggests a role in hormone action and epithelial-stromal interactions. Dev. Biol. 177:347–355.

    Google Scholar 

  48. S. J. Weber-Hall, D. J. Phippard, C. C. Niemeyer, and T. C. Dale (1994). Developmental and hormonal regulation of wnt gene expression in the mouse mammary gland. Differentiation 57:205–214.

    Google Scholar 

  49. V. Wolf, G. Ke, A. M. Dharmarajan, W. Bielke, L. Artuso, S. Saurer, and R. Friis (1997). DDC-4, an apoptosis associated gene, is a secreted frizzled relative. FEBS Lett. 417:385–389.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andres, AC., Strange, R. Apoptosis in the Estrous and Menstrual Cycles. J Mammary Gland Biol Neoplasia 4, 221–228 (1999). https://doi.org/10.1023/A:1018737510695

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018737510695

Navigation