Skip to main content
Log in

Programmed Cell Death in the Terminal Endbud

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Ductal development in the pubertal mouse mammarygland is characterized by dramatic morphological changesin the epithelium driven by proliferation of cap andbody cells in the terminal endbuds. Recent experiments revealed a coincident and abundantapoptosis in the body cells of these structures. Thecells undergoing apoptosis are occasionally restrictedto defined regions within the terminal endbud. Localization adjacent to the presumptive luminasuggests that this process functions to sculpt thelumina of the subtending duct. Members of the Bcl-2family of apoptosis regulatory molecules; Bcl-2 and Bcl-x, appear to have some role in regulatingapoptosis in the terminal endbud. Other possible signalswhich could regulate this developmental process and amodel are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Glucksmann (1951). Cell death in normal vertebrate ontogeny. Biol. Rev. 26:59–86.

    Google Scholar 

  2. J. W. Saunders (1966). Death in embryonic systems. Science 154:604–612.

    Google Scholar 

  3. M. D. Jacobson, M. Weil, and M. C. Raff (1997). Programmed cell death in animal development. Cell 88:347–354.

    Google Scholar 

  4. H. S. Coles, J. F. Burne, and M. C. Raff (1993). Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development 118:777–784.

    Google Scholar 

  5. C. W. Daniel and G. B. Silberstein (1985). In M. Neville and C. Daniel (eds.) The Mammary Gland Development Regulation and Function, Plenum pp. 3–36.

  6. R. C. Humphreys, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajewski, J. C. Reed, and J. M. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022.

    Google Scholar 

  7. R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. U.S.A. 79:7346–7350.

    Google Scholar 

  8. R. Dulbecco, M. Unger, B. Armstrong, M. Bowman, and P. Syka (1983). Epithelial cell types and their evolution in the rat mammary gland determined by immunological markers. Proc. Natl. Acad. Sci. U.S.A. 80:1033–1037.

    Google Scholar 

  9. C. H. Knight and M. Peaker (1982). Development of the mammary gland. J. Reprod. Fertil. 65:521–536.

    Google Scholar 

  10. D. J. Pierce, M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold, A. F. Purchio, C. W. Daniel, B. L. Hogan, H. L. Moses (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 7:2308–2317.

    Google Scholar 

  11. G. B. Silberstein, H. K. Van, G. Shyamala, and C. W. Daniel (1994). Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84–90.

    Google Scholar 

  12. G. B. Silberstein, P. Strickland, S. Coleman, and C. W. Daniel (1990). Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1–growth-inh ibited mouse mammary gland. J. Cell Biol. 110:2209–2219.

    Google Scholar 

  13. R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol. Endocrinol. 11:801–811.

    Google Scholar 

  14. C. W. Daniel and S. D. Robinson (1992). Regulation of mammary growth and function by TGF-beta. Mol. Repro. Dev. 32:145–151.

    Google Scholar 

  15. C. W. Daniel, G. B. Silberstein, and P. Strickland (1987). Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res. 47:6052–6057.

    Google Scholar 

  16. S. Coleman and C. W. Daniel (1990). Inhibition of mouse mammary ductal morphogenesis and down-regulation of the EGF receptor by epidermal growth factor. Dev. Biol. 137: 425–433.

    Google Scholar 

  17. W. Ruan, C. B. Newman, D. L. Kleinberg (1992). Intact and amino-terminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc. Natl. Acad. Sci. U.S.A. 89:10872–10876.

    Google Scholar 

  18. P. D. Walden, W. Ruan, M. Feldman, and D. L. Kleinberg (1998). Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 139:659–662.

    Google Scholar 

  19. Y. Gavrieli, Y. Sherman, and S. S. Ben (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119:493–501.

    Google Scholar 

  20. G. B. Silberstein, K. Van Horn, G. Shyamala, and C. W. Daniel (1996). Progesterone receptors in the mouse mammary duct. Cell Growth Differ. 7:945–952.

    Google Scholar 

  21. Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol. 131:1095–1103.

    Google Scholar 

  22. D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J. M. Rosen (1996). Targeted expression of des (1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression [see comments]. Endocrinology 137: 321–330.

    Google Scholar 

  23. S. Coleman, G. B. Silberstein, and C. W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev. Biol. 127: 304–315.

    Google Scholar 

  24. W. Imagawa, Y. Tomooka, S. Hamamoto, and S. Nandi (1985). Stimulation of mammary epithelial cell growth in vitro: Interaction of epidermal growth factor and mammogenic hormones. Endocrinology 116:1514–1524.

    Google Scholar 

  25. G. R. Merlo, F. Basolo, L. Fiore, L. Duboc, and N. E. Hynes (1995). p53–dependent and p53–independent activation of apoptosis in mammary. J. Cell Biol. 128:1185–1196.

    Google Scholar 

  26. T. M. Casey, H. Chen, K. Plaut, and J. F. Chiu (1996). Involution of mouse mammary glands during whole organ culture occurs. Cell. Biol. Int. 20:763–767.

    Google Scholar 

  27. G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev. Biol. 152:354–362.

    Google Scholar 

  28. E. A. Harrington, A. Fanidi, and G. I. Evan (1994). Oncogenes and cell death. [Review]. Curr. Opin. Gene. Dev. 4:120–129.

    Google Scholar 

  29. J. C. Reed (1994). Bcl-2 and the regulation of programmed cell death. [Review]. J. Cell Biol. 124:1–6.

    Google Scholar 

  30. S. J. Korsmeyer, J. R. Shutter, D. J. Veis, D. E. Merry, and Z. N. Oltvai (1993). Bcl-2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. [Review]. Sem. Cancer Biol. 4:327–332.

    Google Scholar 

  31. M. Li, J. Hu, K. Heermeier, L. Henninghausen, and P. Furth (1996). Apoptosis and remoldeling of mammary gland tissue during involution proceeds through p53–independent pathways. Cell Growth Differ. 7:13–20.

    Google Scholar 

  32. L. A. Donehower, M. Harvey, B. L. Slagle, M. J. McArthur, C. A. J. Montgomery, J. S. Butel, and A. Bradley (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356:215–221.

    Google Scholar 

  33. G. B. Silberstein and C. W. Daniel (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215–222.

    Google Scholar 

  34. P. J. Keely, J. E. Wu, and S. A. Santoro (1995). The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59: 1–13.

    Google Scholar 

  35. Z. Zhang, K. Vuori, J. C. Reed, and E. Ruoslahti (1995). The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc. Natl. Acad. Sci. U.S.A. 92:6161–6165.

    Google Scholar 

  36. S. M. Frisch and H. Francis (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124: 619–626.

    Google Scholar 

  37. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.

    Google Scholar 

  38. R. Khokha, D. C. Martin, and J. E. Fata (1995). Utilization of transgenic mice in the study of matrix degrading proteinases and their inhibitors. [Review]. Cancer Metastasis Rev. 14: 97–111.

    Google Scholar 

  39. J. P. Witty, J. H. Wright, and L. M. Matrisian (1995). Matrix metalloproteinases are expressed during ductal and alveolar. Mol. Biol. Cell 6:1287–1303.

    Google Scholar 

  40. E. Coucouvanis and G. R. Martin (1995). Signals for death and survival: A two-step mechanism for cavitation in the vertebrate embryo. Cell 83:279–287.

    Google Scholar 

  41. C. W. Daniel, P. Strickland, and Y. Friedmann (1995). Expression and functional role of E-and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev. Biol. 169: 511–519.

    Google Scholar 

  42. J. Russo and I. H. Russo (1978). DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis. J. Natl. Cancer Inst. 61: 1451–1459.

    Google Scholar 

  43. J. Russo, G. Wilgus, and I. H. Russo (1979). Susceptibility of the mammary gland to carcinogenesis: I Differentiation of the mammary gland as determinant of tumor incidence and type of lesion. Am. J. Path. 96:721–736.

    Google Scholar 

  44. J. Russo and I. H. Russo (1987). Biological and molecular bases of mammary carcinogenesis. [Review]. Lab. Invest. 57: 112–137.

    Google Scholar 

  45. K. T. Christov, R. C. Guzman, S. M. Swanson, G. Thordarson, F. Talamantes, and S. Nandi (1996). Cell proliferation and apoptosis during mammary carcinogenesis in pituitary isografted mice. Carcinogenesis 17:1741–1746.

    Google Scholar 

  46. G. I. Evan, L. Brown, M. Whyte, and E. Harrington (1995). Apoptosis and the cell cycle. [Review]. Curr. Opin. Cell Biol. 7:825–834.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, R.C. Programmed Cell Death in the Terminal Endbud. J Mammary Gland Biol Neoplasia 4, 213–220 (1999). https://doi.org/10.1023/A:1018733426625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018733426625

Navigation