Skip to main content
Log in

Transcription Factor Activities and Gene Expression During Mouse Mammary Gland Involution

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Maintenance of mammary epithelialdifferentiation and milk production during lactation isa consequence of milk removal and the presence oflactogenic hormones, particularly glucocorticoids,insulin and prolactin. After weaning the fall in lactogenichormones and milk stasis lead to involution, a processthat is mainly characterized by three events: (i)downregulation of milk protein gene expression, (ii) loss of epithelial cells by apoptosis and,(iii) tissue remodeling and preparation of the gland fora new pregnancy. Each of these processes is likely todepend on the activity of specific sets of transcription factors in the mammary epithelium and stromathat ensure the timely and spatially coordinatedexpression of critical gene products such as mediatorsof apoptosis (e.g., caspase-1 and regulators of tissue remodeling events (e.g., matrixmetalloproteinases). Here we describe signaltransduction events such as activation of protein kinaseA and JNK3 and changes in the activity ofseveral transcription factors including Stat5, Stat3, NF1, Oct-1, and AP-1during the early and late phases of mammary glandinvolution. We discuss their possible role in regulatingand coordinating involution with emphasis on theapoptotic process of involution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. C. Andres, G. Zuercher, V. Djonov, M. Flueck, and A. Ziemiecki (1995). Protein tyrosine kinase expression during the estrous cycle and carcinogenesis of the mammary gland. Int. J. Cancer 63:288–296.

    Google Scholar 

  2. R. Blaschke, A. C. Andres, H. H. Reid, G. Zurcher, R. R. Friis, and A. Ziemiecki (1991). Tyrosine kinases: From viral oncogenes to developmental regulators. Behring Inst. Mitt. 89:81–92.

    Google Scholar 

  3. T. Burdon, L. Sankaran, R. J. Wall, M. Spencer, and L. Hennighausen (1991). Expression of a whey acidic protein transgene during mammary development. Evidence for different mechanisms of regulation during pregnancy and lactation. J. Biol. Chem. 266:6909–6914.

    Google Scholar 

  4. M. Li, J. Hu, K. Heermeier, L. Hennighausen, and P. A. Furth (1996). Apoptosis and remodeling of mammary gland tissue during involution proceeds through p53–independent pathways. Cell Death Differ. 7:13–20.

    Google Scholar 

  5. L. Hennighausen, G. W. Robinson, K. U. Wagner, and W. Liu (1997). Prolactin signaling in mammary gland development. J. Biol. Chem. 272:7567–7569.

    Google Scholar 

  6. F. Li, R. Strange, R. R. Friis, V. Djonov, H. J. Altermatt, S. Saurer, H. Niemann, and A. C. Andres (1994). Expression of stromelysin-1 and TIMP-1 in the involuting mammary gland and in early invasive tumors of the mouse. Int. J. Cancer 59:560–568.

    Google Scholar 

  7. L. Ossowski, D. Biegel, and E. Reich (1979). Mammary plasminogen activator: Correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 16:929–940.

    Google Scholar 

  8. R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.

    Google Scholar 

  9. X. Liu, G. W. Robinson, K. U. Wagner, L. Garrett, A. Wynshaw-Boris, and L. Hennighausen (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11:179–186.

    Google Scholar 

  10. L. Hennighausen, G. W. Robinson, K. U. Wagner, and X. Liu (1997). Developing a mammary gland is a Stat affair. J. Mam. Gland Biol. Neoplasia 2:365–372.

    Google Scholar 

  11. L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122:181–193.

    Google Scholar 

  12. N. I. Walker, R. E. Bennett, and J. F. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.

    Google Scholar 

  13. M. Schmitt-Ney, B. Happ, R. K. Ball, and B. Groner (1992). Developmental and environmental regulation of a mammary gland-specific nuclear factor essential for transcription of the gene encoding beta-casein. Proc. Natl. Acad. Sci. U.S.A. 89:3130–3134.

    Google Scholar 

  14. R. Jaggi, A. Marti, K. Guo, Z. Feng, and R. R. Friis (1996). Regulation of a physiological apoptosis: Mouse mammary involution. J. Dairy Sci. 79:1074–1084.

    Google Scholar 

  15. A. Marti, B. Jehn, E. Costello, N. Keon, G. Ke, F. Martin, and R. Jaggi (1994). Protein kinase A and AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene 9:1213–1223.

    Google Scholar 

  16. A. Marti, Z. Feng, B. Jehn, V. Djonov, G. Chicaiza, H.-J. Altermatt, and R. Jaggi (1995). Expression and activity of cell cycle regulators during proliferation and programmed cell death in the mammary gland. Cell Death. Differ. 2:277–283.

    Google Scholar 

  17. K. Heermeier, M. Benedict, M. Li, P. Furth, G. Nunez, and L. Hennighausen (1996). Bax and Bcl-xs are induced at the onset of apoptosis in involuting mammary epithelial cells. Mech. Dev. 56:197–207.

    Google Scholar 

  18. M. Li, X. Liu, G. Robinson, U. Bar-Peled, K. U. Wagner, W. S. Young, L. Hennighausen, and P. A. Furth (1997). Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc. Natl. Acad. Sci. U. S. A. 94:3425–3430.

    Google Scholar 

  19. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.

    Google Scholar 

  20. R. S. Talhouk, M. J. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118:1271–1282.

    Google Scholar 

  21. M. T. Travers, M. C. Barber, E. Tonner, L. Quarrie, C. J. Wilde, and D. J. Flint (1996). The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival: Relationships to milk synthesis and secretion. Endocrinology. 137:1530–1539.

    Google Scholar 

  22. M. Peaker, C. J. Wilde, and C. H. Knight (1998). Local control of the mammary gland. Biochem. Soc. Symp. 63:71–79.

    Google Scholar 

  23. A. Marti, Z. Feng, H. J. Altermatt, and R. Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell Biol. 73:158–165.

    Google Scholar 

  24. Z. Feng, A. Marti, B. Jehn, H. J. Altermatt, G. Chicaiza, and R. Jaggi (1995). Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J. Cell Biol. 131:1095–1103.

    Google Scholar 

  25. L. A. Pena, Z. Fuks, and R. Kolesnick (1997). Stress-induced apoptosis and the sphingomyelin pathway. Biochem. Pharmacol. 53:615–621.

    Google Scholar 

  26. M. Verheij, R. Bose, X. H. Lin, B. Yao, W. D. Jarvis, S. Grant, M. J. Birrer, E. Szabo, L. I. Zon, J. M. Kyriakis, A. Haimovitzfriedman, Z. Fuks, and R. N. Kolesnick (1996). Requirement for ceramide-initiated Sapk/Jnk signalling in stress-induced apoptosis. Nature 380:75–79.

    Google Scholar 

  27. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331.

    Google Scholar 

  28. B. W. Zanke, K. Boudreau, E. Rubie, E. Winnett, L. A. Tibbles, L. Zon, J. Kyriakis, F. F. Liu, and J. R. Woodgett (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by Cis-platinum, UV irradiation or heat. Curr. Biol. 6:606–613.

    Google Scholar 

  29. M. Hibi, A. Lin, T. Smeal, A. Minden, and M. Karin (1993). Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7:2135–2148.

    Google Scholar 

  30. J. N. Ihle and I. M. Kerr (1995). Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet. 11:69–74.

    Google Scholar 

  31. S. Li, and J. M. Rosen (1995). Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol. Cell. Biol. 15:2063–2070.

    Google Scholar 

  32. X. Liu, G. W. Robinson, F. Gouilleux, B. Groner, and L. Hennighausen (1995). Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc. Natl. Acad. Sci. U.S.A. 92:8831–8835.

    Google Scholar 

  33. A. Kumar, M. Commane, T. W. Flickinger, C. M. Horvath, and G. R. Stark (1997). Defective TNF-alpha-induced apoptosis in STAT1–null cells due to low constitutive levels of caspases. Science 278:1630–1632.

    Google Scholar 

  34. D. Apt, T. Chong, Y. Liu, and H. U. Bernard (1993). Nuclear factor I and epithelial cell-specific transcription of human papillomavirus type 16. J. Virol. 67:4455–4463.

    Google Scholar 

  35. T. K. Archer, P. Lefebvre, R. G. Wolford, and G. L. Hager (1992). Transcription factor loading on the MMTV promoter: A bimodal mechanism for promoter activation. Science 255: 1573–1576.

    Google Scholar 

  36. R. A. Graves, P. Tontonoz, S. R. Ross, and B. M. Spiegelman (1991). Identification of a potent adipocyte-specific enhancer: Involvement of an NF-1–like factor. Genes Dev. 5:428–437.

    Google Scholar 

  37. D. A. Jackson, K. E. Rowader, K. Stevens, C. Jiang, P. Milos, and K. S. Zaret (1993). Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition. Mol. Cell. Biol. 13:2401–2410.

    Google Scholar 

  38. E. E. M. Furlong, N. K. Keon, F. D. Thornton, T. Rein, and F. Martin (1996). Expression of a 74–kDa nuclear factor 1 (NF1) protein is induced in mouse mammary gland involution. Involution-enhanced occupation of a twin NF1 binding element in the testosterone-repressed prostate message-2/clusterin promoter. J. Biol. Chem. 271:29688–29697.

    Google Scholar 

  39. N. Segil, S. B. Roberts, and N. Heintz (1991). Mitotic phosphorylation of the Oct-1 homeodomain and regulation of Oct-1 DNA binding activity. Science 254:1814–1816.

    Google Scholar 

  40. S. Murphy, J. B. Yoon, T. Gerster, and R. G. Roeder (1992). Oct-1 and Oct-2 potentiate functional interactions of a transcription factor with the proximal sequence element of small nuclear RNA genes. Mol. Cell. Biol. 12:3247–3261.

    Google Scholar 

  41. C. Fletcher, N. Heintz, and R. G. Roeder (1987). Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. Cell 51:773–781.

    Google Scholar 

  42. P. Carbon, S. Murgo, J. P. Ebel, A. Krol, G. Tebb, and L. W. Mattaj (1987). A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 51:71–79.

    Google Scholar 

  43. F. Hafezi, A. Marti, A. Wenzel, C. Grimm, C. E. Remé, and G. Niemeyer (1999). Opposite DNA binding activities of the transcription factors AP-1 and Oct-1 during light induced apoptosis of retinal photoreceptors. Vision Res. (in press).

  44. M. Karin, Z. Liu, and E. Zandi (1997). AP-1 function and regulation. Curr. Opin. Cell Biol. 9:240–246.

    Google Scholar 

  45. S. J. Busch and P. Sassone-Corsi (1990). Dimers, leucine zippers and DNA-binding domains. Trends Genet. 6:36–40.

    Google Scholar 

  46. T. Curran and B. R. Franza, Jr. (1988). Fos and Jun: The AP-1 connection. Cell 55:395–397.

    Google Scholar 

  47. B. Lewin (1991). Oncogenic conversion by regulatory changes in transcription factors. Cell 64:303–312.

    Google Scholar 

  48. P. Sassone-Corsi, J. Visvader, L. Ferland, P. L. Mellon, and I. M. Verma (1988). Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: Characterization of a cAMP-responsive element. Genes Dev. 2:1529–1538.

    Google Scholar 

  49. R. P. de Groot, J. Auwerx, M. Karperien, B. Staels, and W. Kruijer (1991). Activation of junB by PKC and PKA signal transduction through a novel cis-acting element. Nucleic Acids Res. 19:775–781.

    Google Scholar 

  50. F. Hafezi, J. P. Steinbach, A. Marti, K. Munz, Z. Q. Wang, E. F. Wagner, A. Aguzzi, and C. E. Reme (1997). The absence of c-fos prevents light-induced apoptotic cell death of photoreceptors in retinal degeneration in vivo. Nat. Med. 3:346–349.

    Google Scholar 

  51. Z. Feng, H. J. Joos, C. Vallan, R. Mühlbauer, H. J. Altermatt, and R. Jaggi (1998). Apoptosis during castration-induced regression of the prostate is Fos dependent. Oncogene 17: 2593–2600.

    Google Scholar 

  52. E. Hu, E. Mueller, S. Oliviero, V. E. Papaioannou, R. Johnson, and B. M. Spiegelman (1994). Targeted disruption of the c-fos gene demonstrates c-fos-dependent and-independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J. 13:3094–3103.

    Google Scholar 

  53. M. Karin (1998). New twists in gene regulation by glucocorticoid receptor: Is DNA binding dispensable? Cell 93:487–490.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marti, A., Lazar, H., Ritter, P. et al. Transcription Factor Activities and Gene Expression During Mouse Mammary Gland Involution. J Mammary Gland Biol Neoplasia 4, 145–152 (1999). https://doi.org/10.1023/A:1018721107061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018721107061

Navigation