Skip to main content
Log in

Randomly Amplified Polymorphic DNA Variation in Populations of Eastern Australian Koalas, Phascolarctos cinereus

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Randomly amplified polymorphic DNA (RAPD)variation in populations of the koala, Phascolarctoscinereus, was investigated, revealing significantdifferences in the level of diversity between southernand northern regions of eastern Australia. Of the20 polymorphic RAPD markers identified in koalas, 4-7were polymorphic in southern populations, while 12-17were polymorphic in northern populations. Analysis of molecular variance revealed a significantdifference in the estimated variance between koalas fromnorthern and those from southern regions (P < 0.001),where populations from the north were greater than twice as variable as their southerncousins. The total genetic diversity observed wasattributed to regional differences (30.91%), populationdifferences within a region (11.77%), and differencesamong individuals within a population (57.32%). Forthe within-region analyses, a large proportion of thegenetic diversity was attributable to individualdifferences within a population, 80.34% for the north and 91.23% for the south. These resultsdemonstrate that RAPD markers are useful for determiningpopulation structure among koalas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Black, W. C., IV (1993). PCR with arbitrary primers: Approach with care. Insect Mol. Biol. 2:1.

    PubMed  Google Scholar 

  • Cocciolone, R. A., and Timms, P. (1992). DNA profiling of Queensland koalas reveals sufficient variability for individual identification and parentage determination. Wildlife Res. 19:279.

    Google Scholar 

  • Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genet. Soc. Am. 131:479.

    Google Scholar 

  • Fowler, E. V., Houlden, B. A., Sherwin, W. B., Hoeben, P., and Timms, P. (1998). Genetic variation in captive koalas (Phascolarctos cinereus): Parentage determination and individual identification. Biochem. Genet. 36:193.

    PubMed  Google Scholar 

  • Hadrys, H., Balick, M., and Schierwater, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1:55.

    PubMed  Google Scholar 

  • Houlden, B.A., England, P. R., Taylor, A. C., Greville, W. D., and Sherwin, W. B. (1996). Low genetic variability of the koala Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck. Mol. Ecol. 5:269.

    PubMed  Google Scholar 

  • Huff, D. R., Peakall, R., and Smouse, P. E. (1993). RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86: 927.

    Google Scholar 

  • Jarne, P., and Lagoda, P. J. L. (1996). Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11:424.

    Google Scholar 

  • Lewis, F. (1954). The rehabilitation of the koala in Victoria. Victorian Nat. 70:197.

    Google Scholar 

  • Martin, R., and Handasyde, K. (1990). Translocations and the re-establishment of koala populations in Victoria (1944–988): The implications for New South Wales. In Lunney, D., Urquhart, C. A., and Reed, P. (eds.), Koala Summit: Managing Koalas in New South Wales, NSW National Parks and Wildlife Service, Hurstville, pp. 58–64.

    Google Scholar 

  • Nusser, J. A., Goto, R. M., Ledig, D. B., Fleischer, R. C., and Miller, M. M. (1996). RAPD analysis reveals low genetic variability in the endangered light-footed clapper rail. Mol. Ecol. 5:463.

    PubMed  Google Scholar 

  • Pahl, L., Wylie, R., and Fisher, R. (1989). Koalas: The prospects for survival. Habitat Austral. 17:20.

    Google Scholar 

  • Phillips, B. (1990). Koalas: The Little Australians We'd All Hate to Lose, Commonwealth of Australia, Canberra, pp. 31–49.

    Google Scholar 

  • Podani, J. (1993). SYN-TAX Version 5.0. Computer Programs for Multivariate Data Analysis in Ecology and Systematics, Scientia, Budapest.

    Google Scholar 

  • Reed, P. C., Lunney, D., and Walker, P. (1990). A 1986–1987 survey of the koala Phascolarctos cinereus (Goldfuss) in New South Wales and an ecological interpretation of its distribution. In Lee, A. K., Handasyde, K. A., and Hanson, G. D. (eds.), Biology of the Koala, Surrey Beatty and Sons, Sydney, pp. 55–74.

    Google Scholar 

  • Rice, W. R. (1989). Analysing tables of statistical tests. Evolution 43:223.

    Google Scholar 

  • Rico, C., Rico, I., and Hewitt, G. (1996). 470 million years of conservation of microsatellite loci among fish species. Proc. Roy. Soc. London B 263: 549.

    Google Scholar 

  • Robinson, A. C. (1978). The koala in South Australia. In Bergin, T. J. (ed.), The Koala: Proceedings of the Taronga Symposium of Koala Biology, Management and Medicine, Sydney, 11 and 12 March 1976, Zoological Parks Board of NSW, Sydney, pp. 132–143.

    Google Scholar 

  • Sharp, A. (1995). The Koala Book, Australian Koala Foundation, David Bateman Ltd., Auckland, pp.49–63.

    Google Scholar 

  • Sinclair, E.A., Webb, N. J., Marchant, A. D., and Tidemann, C. R. (1996). Genetic variation in the little red flying fox Pteropus scapulatus (Chiroptera: Pteropodidae): Implications for management. Biol. Conserv. 76: 45.

    Google Scholar 

  • Strahan, R., and Martin, R. (1982). The koala: Little fact, much emotion. In Groves, R. H., and Ride, W. D. L. (eds.), Species at Risk: Research in Australia, Australian Academy of Science, Canberra, pp. 147–155.

    Google Scholar 

  • Taylor, A. C., Marshall Graves, J. M., Murray, N. D., O'Brien, S. J., Yuhki, N., and Sherwin, W. B. (1997). Conservation genetics of the koala (Phascolarctos cinereus): low mitochondrial DNA variation amongst Southern Australian populations. Genet. Res. 69: 25.

    PubMed  Google Scholar 

  • Taylor, A. C., Marshall Graves, J. A., Murray, N. D., and Sherwin, W. B. (1991). Conservation genetics of the koala (Phascolarctos cinereus). II. Limited variability in minisatellite DNA sequences. Biochem. Genet. 29:355.

    PubMed  Google Scholar 

  • Timms, P., Kato, J., Maugeri, M., and White, N. (1993). DNA fingerprinting analysis of a free-range koala population. Biochem. Genet. 31:361.

    Google Scholar 

  • Warneke, R. M. (1978). The status of the koala in Victoria. In Bergin, T. J. (ed.), The Koala: Proceedings of the Taronga Symposium of Koala Biology, Management and Medicine, Sydney, 11 and 12 March 1976, Zoological Parks Board of NSW, Sydney, pp. 109–114.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531.

    PubMed  Google Scholar 

  • Worthington-Wilmer, J. M., Melzer, A., Carrick, F., and Moritz, C. (1993). Low genetic diversity and inbreeding depression in Queensland koalas. Wildlife Res. 20:177.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, E.V., Hoeben, P. & Timms, P. Randomly Amplified Polymorphic DNA Variation in Populations of Eastern Australian Koalas, Phascolarctos cinereus. Biochem Genet 36, 381–393 (1998). https://doi.org/10.1023/A:1018701630713

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018701630713

Navigation