Skip to main content
Log in

Trend to Equilibrium of a Degenerate Relativistic Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine the problem of the trend to equilibrium for a relativistic gas which may follow Fermi–Dirac, Bose–Einsten, classical Boltzmann statistics. We use the relativistic version of the quasiclassical Boltzmann equation for fermions and bosons, the Uehling–Uhlenbeck equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas (Academic Press, New York, 1980).

    Google Scholar 

  2. T. Carleman, Sur la théorie de l'équation intégro-differentielle de Boltzmann, Acta Mathematica 60:91–146 (1933).

    Google Scholar 

  3. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz (Almqvist & Wiksells, Uppsala, 1957).

    Google Scholar 

  4. D. Morgenstern, General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules, Proceedings of the National Academy of Sciences (U.S.A.) 40:719–721 (1954).

    Google Scholar 

  5. L. Arkeryd, On the Boltzmann equation. Part I: Existence, Arch. Rat. Mech. Anal. 45:1–16 (1972).

    Google Scholar 

  6. L. Arkeryd, On the Boltzmann equation. Part II: The full initial value problem, Arch. Rat. Mech. Anal. 45:17–34 (1972).

    Google Scholar 

  7. L. Arkeryd, L∞ estimates for the space-homogeneous Boltzmann equation, J. Stat. Phys. 31:347–361 (1983).

    Google Scholar 

  8. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994).

    Google Scholar 

  9. E. A. Uehling, and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi- Dirac gases. I, Phys. Rev. 43:552–561 (1933).

    Google Scholar 

  10. S. Chapman, and T. G. Cowling, TThe Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, London, 1940).

    Google Scholar 

  11. J. Dolbeault, Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-Dirac particles, Arch. Ration. Mech. Anal. 127:101–131 (1994).

    Google Scholar 

  12. P. L. Lions, Compactness in Boltzmann's equation via Fourier integral operator and applications III, J. Math. Kyoto Univ. 34:539–584 (1994).

    Google Scholar 

  13. X. Lu, Global Isotropic Solutions of a Modified Boltzmann Equation for Bose-Einstein Particles, Presented at the XVI International Conference on Transport Theory (Atlanta, May 10-15, 1999).

  14. H. Andréasson, Regularity of the gain term and strong L1 convergence to equilibrium for the relativistic Boltzmann equation, SIAM Math. Anal. 27:1387–1405 (1996).

    Google Scholar 

  15. R. Glassey and W. Strauss, Asymptotic stability of the relativistic equilibrium, Publ. Res. Inst. Math. Sci. 29:301–347 (1992).

    Google Scholar 

  16. C. Cercignani and G. M. Kremer, On relativistic collisional invariants, J. Stat. Phys. (to appear, 1999).

  17. F. Jüttner, Das Maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie, Ann. Physik Chemie 34:856–882 (1911).

    Google Scholar 

  18. F. Jüttner, Die relativistische quantentheorie des idealen gases, Zeitschr. Physik 47:542–566 (1928).

    Google Scholar 

  19. C. Cercignani, Ludwig Boltzmann. The Man Who Trusted Atoms (Oxford University Press, Oxford, 1998).

    Google Scholar 

  20. C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. 34:231–241 (1982).

    Google Scholar 

  21. A. V. Bobylev, Exact solutions of the Boltzmann equation and the theory of relaxation of Maxwell gas, USSR Theor. Math. Phys. 60:280–310 (1984).

    Google Scholar 

  22. E. A. Carlen and M. C. Carvalho, The central limit theorem, entropy production and stability of the rate of convergence for the Boltzmann equation, in Probabilistic Methods in Mathematical Physics, F. Guerra, M. I. Loffredo, and C. Marchioro, eds. (World Scientific, Singapore, 1992), pp. 140–154.

    Google Scholar 

  23. E. A. Marten and M. C. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Stat. Phys. 74:743–782 (1994).

    Google Scholar 

  24. B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Stat. Phys. 86:1053–1066 (1997).

    Google Scholar 

  25. A. V. Bobylev and C. Cercignani, On the rate of entropy production for the Boltzmann equation, J. Stat. Phys. (to appear, 1999).

  26. G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, submitted to Comm. Math. Phys. (1998).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cercignani, C., Kremer, G.M. Trend to Equilibrium of a Degenerate Relativistic Gas. Journal of Statistical Physics 98, 441–456 (2000). https://doi.org/10.1023/A:1018695426728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018695426728

Navigation