Skip to main content
Log in

The size effects on the mechanical behaviour of fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The size of a fibre affects its mechanical properties and thus is of theoretical and practical importance for studies of the rupturing process during loading of a fibrous structure. This paper investigates the overall effects of length on the mechanical behaviour of single fibres. Four types of fibres, ranging from brittle to highly extensible, were tested for their tensile properties at several different gauge lengths. Different from most previous studies where the focus has been on the gauge length effects on a single property such as fibre strength or breaking strain, this paper look comprehensively into the effects of length on all three of the most commonly studied mechanical properties, namely strength, breaking strain and initial modulus. Particular emphasis is placed on initial modulus and on the interactions between all three parameters. Influences of strain rate and fibre type on the size effects are also investigated. The effect of potential fibre slippage on experimental error is examined. An image analysis method is used to measure the real fibre elongation in comparison to the same fibre elongation obtained directly from an Instron tester. Finally, a statistical analysis is carried out using the experimental data to test the fitness of the Weibull theory to polymeric fibres. This was done as the Weibull model has been extensively utilized in examining fibre strength and breaking strain, although it is supposed to be valid only for the so-called classic fibres to which more extensible polymeric fibres do not belong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. BATDORF J. Reinf. Plast. Compos. 1 (1982) 153.

    Google Scholar 

  2. S. B. BATDORF and R. GHAFFARIAN ibid. 1 (1982) 165.

    Google Scholar 

  3. D. G. HARLOW and S. L. PHOENIX Int. J. Fracture 17 (1981) 347

    Article  Google Scholar 

  4. Idem, ibid. 17 (1981) 601.

    Article  Google Scholar 

  5. B. W. ROSEN, AIAA J. 2 (1964) 1985.

    Article  Google Scholar 

  6. C. ZWEBEN, ibid 6 (1968) 2325.

    Google Scholar 

  7. C. ZWEBEN and B. W. ROSEN, J. Mech. Phys. Solids 18 (1970) 189.

    Article  Google Scholar 

  8. P. FEILLARD, G. DESARMOT and J. P. FAVRE, Compos. Sci. Technol. 50 (1994) 265.

    Article  CAS  Google Scholar 

  9. B. D. COLMAN, J. Mech. Phys. Solids 7 (1958) 60–70.

    Article  Google Scholar 

  10. F. T. PEIRCE, J. Textile Inst. 17 (1926) 355.

    Google Scholar 

  11. L. J. KNOX and J. C. WHITWELL, Textile Res. J. 41 (1971) 510.

    Google Scholar 

  12. A. S. WATSON and R. L. SMITH, J. Mater. Sci. 20 (1985) 3260.

    Article  Google Scholar 

  13. P. SCHWARTZ, A. NETRAVALI and S. SEMBACH, Textile Res. J. 56 (1986) 502.

    CAS  Google Scholar 

  14. V. LAVASTE, J. BESSON and A. R. BUNSELL, J. Mater. Sci. 28 (1993) 6107.

    Article  Google Scholar 

  15. Y. TERMONIA, J. Polym. Sci.: Part B: Polym. Phys. 33 (1995) 147.

    Article  CAS  Google Scholar 

  16. Z. F. CHI, T. W. CHOU and G. SHEN, J. Compos. Mater. 17 (1983) 196.

    CAS  Google Scholar 

  17. J. B. MURGATROYD, J. Soc. Glass Technol. 28 (1994) 368.

    Google Scholar 

  18. S. BATESON, J. Appl. Physics 29 (1958) 13.

    Article  CAS  Google Scholar 

  19. B. J. NORMAN and D. R. OAKLEY, Glass Technol. 12 (1971) 45.

    Google Scholar 

  20. G. PAHLER and R. BRUCKNER, Glastech. Ber. 58 (1995) 45.

    Google Scholar 

  21. M. W. SUH, Textile Res. J. 42 (1972) 438.

    Google Scholar 

  22. W. A. CURTIN, J. Amer. Ceram. Soc. 74 (1991) 2837.

    Article  CAS  Google Scholar 

  23. N. PAN, J. Reinf. Plast. Compos. 14 (1995) 2.

    Google Scholar 

  24. Idem, J. Mater. Sci. 30 (1995) 2042.

    Article  Google Scholar 

  25. “Instruction Manuals”, Instron Series IX Automated Testing System (Instron Inc., Canton, MA, 1992) p. 13.23.

  26. W. MENDENHALL and T. SINCICH, “Statistics for Engineering and the Sciences”, 3rd Edn (Macmillan Publication Company, New York, 1992) p. 359.

    Google Scholar 

  27. W. E. MORTON and J. W. S. HEARLE, “Physical Properties of Textile fibres” (The Textile Institute, Manchester, 1992) p. 356.

    Google Scholar 

  28. Idem, ibid. The Textile Institute, Manchester, 1992) p. 314.

    Google Scholar 

  29. H. E. DANIELS, Proc. Roy. Soc. A183 (1945) 405.

    Google Scholar 

  30. K. V. BURY, “Statistical Models in Applied Science” (John Wiley & Sons, New York, 1975) p. 204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PAN, N., CHEN, H.C., THOMPSON, J. et al. The size effects on the mechanical behaviour of fibres. Journal of Materials Science 32, 2677–2685 (1997). https://doi.org/10.1023/A:1018679207303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018679207303

Keywords

Navigation