Skip to main content
Log in

Multilayer Cooperative Sequential Adsorption

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Cooperative sequential adsorption is here extended to multilayer coverages. We discuss two different growth rules with cooperativity either restricted to only the first layer of coverage or applied in all layers. The unrestricted variant is considered in the case where lateral growth dominates over the nucleation of terraces. The limit of completely suppressed nucleation corresponds to a morphological transition to a flat interface from one governed by the Kardar–Parisi–Zhang equation. With the restricted growth rule we find interesting behavior resulting from a competition between lateral growth at the first layer and growth on the top of nucleated islands. There is an intermediate regime between random deposition at the submonolayer coverage and asymptotic random deposition behavior. In this regime the kinetic roughening can be studied by applying sequential adsorption rate equations for cluster lengths in the first layer, with an additional geometric argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Evans, Rev. Mod. Phys. 65:1281 (1993).

    Google Scholar 

  2. J. W. Evans, D. K. Hoffmann, and D. R. Burgess, J. Chem. Phys. 80:936 (1984).

    Google Scholar 

  3. J. B. Keller, J. Chem. Phys. 37:2584 (1962); J. B. Keller, J. Chem. Phys. 38:325 (1963); T. Alfrey, Jr. and W. G. Lloyd, J. Chem. Phys. 38:318 (1963); C. B. Arends, J. Chem. Phys. 38:322 (1963).

    Google Scholar 

  4. A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995).

  5. G. J. Rodgers and J. A. N. Filipe, J. Phys. A: Math. Gen. 30:3449 (1997).

    Google Scholar 

  6. W. van Saarloos and G. Gilmer, Phys. Rev. B 33:4927 (1986).

    Google Scholar 

  7. D. J. Gates and M. Westcott, Proc. R. Soc. Lond. A 416:443 (1988).

    Google Scholar 

  8. D. J. Gates and M. Westcott, Proc. R. Soc. Lond. A 416:463 (1988).

    Google Scholar 

  9. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  10. J. G. Amar and F. Family, Phys. Rev. Lett. 64:543 (1990).

    Google Scholar 

  11. J. Krug, P. Meakin, and T. Halpin-Healy, Phys. Rev. A 45:638 (1992).

    Google Scholar 

  12. J. Krug and H. Spohn, Europhys. Lett. 8:219 (1989).

    Google Scholar 

  13. L.-H. Tang and H. Leschhorn, Phys. Rev. A 45:R8309 (1992); S. V. Buldyrev, A.-L. Baraba_si, F. Caserta, S. Havlin, H. E. Stanley, and T. Vicsek, Phys. Rev. A 45:R8313 (1992).

    Google Scholar 

  14. J. Kertész and D. Wolf, Phys. Rev. Lett. 62:2571 (1989).

    Google Scholar 

  15. U. Alon, M. Evans, H. Hinrichsen, and D. Mukamel, Phys. Rev. Lett. 76:2710 (1996).

    Google Scholar 

  16. H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev. Lett. 79:2710 (1997).

    Google Scholar 

  17. J. Krug and H. Spohn, Phys. Rev. A 38:4271 (1988).

    Google Scholar 

  18. P. L. Krapivsky and E. Ben-Naim, Phys. Rev. E 56:3788 (1997).

    Google Scholar 

  19. F. C. Frank, J. Cryst. Growth 22:233 (1974).

    Google Scholar 

  20. N. Goldenfeld, J. Phys. A: Math. Gen. 17:2807 (1984).

    Google Scholar 

  21. L. A. N. Amaral, A.-L. Barabási, and H. E. Stanley, Phys. Rev. Lett. 73:62 (1994).

    Google Scholar 

  22. J. Krug and H. Spohn, in Solids Far from Equilibrium, C. Godrèche, ed. (Cambridge University Press, 1991).

  23. J. J. González and K. W. Kehr, Macromolecules 11:996 (1978).

    Google Scholar 

  24. J. J. González, P. C. Hemmer, and J. S. Høye, Chem. Phys. 3:228 (1974).

    Google Scholar 

  25. J. W. Evans, J. A. Bartz, and D. E. Sanders, Phys. Rev. A 34:1434 (1986).

    Google Scholar 

  26. S. R. Anderson and F. Family, Phys. Rev. A 38:4198 (1988).

    Google Scholar 

  27. D. E. Sanders and J. W. Evans, Phys. Rev. A 38:4186, (1988).

    Google Scholar 

  28. E. Ben-Naim and P. L. Krapivsky, Phys. Rev. E 56:6680 (1997).

    Google Scholar 

  29. D. J. Gates and M. Westcott, J. Stat. Phys. 81:681 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellén, E.K.O., Szelestey, P. & Alava, M.J. Multilayer Cooperative Sequential Adsorption. Journal of Statistical Physics 98, 265–280 (2000). https://doi.org/10.1023/A:1018678923094

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018678923094

Navigation