Skip to main content
Log in

Evaluation of subgrain formation in Al2O3–SiC nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Both theoretical analysis and transmission electron microscopy (TEM) complementary studies have been conducted to evaluate the possible role of subgrain formation as a strengthening mechanism in a nanocomposite consisting of Al2O3 and 5 vol % 0.15 μm SiC particles. The theoretical calculation predicted that the residual stresses due to thermal expansion mismatch between Al2O3 and SiC are insufficient to induce the extensive plastic deformation required for subgrain formation upon annealing. This prediction was consistent with TEM observations that the bulk of the material was completely free from subgrains, and that only a low density of dislocations was present in isolated areas. The results suggest, therefore, that microstructure refinement through subgrain formation cannot account for the superior mechanical behaviour of the nanocomposite reported in previous studies.

TEM examination of the ground surfaces revealed significant plastic deformation in both single phase Al2O3 and the nanocomposite. Upon annealing at 1300°C for 2 h, dislocation-free subgrains were formed in Al2O3, whereas a high density of tangled dislocations were present in the nanocomposite. These observed differences are consistent with the fact that during annealing, residual stress relaxation is more difficult in the nanocomposite than in Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. NIIHARA and A. NAKAHIRA, in Proceedings of the Third International Symposium on Ceramic Materials & Components for Engines (The American Ceramic Society, Westerville, OH, 1988) p. 919.

    Google Scholar 

  2. K. NIIHARA, A. NAKAHIRA, G. SASAKI and M. HIRABAYASHI, in Proceedings of the International Meeting on Advanced Materials, vol. 4 (The Materials Research Society, Japan, 1989) p. 124.

    Google Scholar 

  3. K. NIIHARA and A. NAKAHIRA, “Advanced structural inorganic composites”, edited by P. Vincenzini (Elsevier Science Publishers, Trieste 1990) p. 637.

    Google Scholar 

  4. J. ZHAO, L. C. STEARNS, M. P. HARMER, H. M. CHAN, G. A. MILLER and R. F. COOK,J. Amer. Ceram. Soc. 76 (1993) 503.

    Google Scholar 

  5. I. LEVIN, W. D. KAPLAN, DAVID G. BRANDON and A. A. LAYYOUS, to be published.

  6. HANS WOHLFROMM,Ceram. Trans. 51 (1994) 659.

    Google Scholar 

  7. K. NIIHARA,J. Ceram. Soc. Japan 99 (1991) 974.

    Google Scholar 

  8. K. NIIHARA, A. NAKAHIRA and T. SEKINO,Mater. Res. Soc. Symp. Proc. 286 (1993) 405.

    Google Scholar 

  9. A. M. THOMPSON, H. M. CHAN and M. P. HARMER,J. Amer. Ceram. Soc. 78 (1994) 567.

    Google Scholar 

  10. J. FANG, H. M. CHAN and M. P. HARMER,Mater. Sci. Eng. A195 (1995) 163.

    Google Scholar 

  11. L. C. STEARNS, J. ZHAO and M. P. HARMER,J. Eur. Ceram. Soc. 10 (1992) 473.

    Google Scholar 

  12. J. SELSING,J. Amer. Ceram. Soc. 44 (1961) 419.

    Google Scholar 

  13. Y. S. TOULOUKIAN, R. K. KIRBY, R. E. TAYLOR and T. Y. R. LEE (eds) “Thermophysical properties of matter”, Vol. 13, (IFI/Plenum, New York, 1970).

    Google Scholar 

  14. R. MORRELL (ed) “Handbook of properties of technical & engineering ceramics”, Part 2 Data Reviews, Section 1 High-Alumina Ceramics, (Her Majesty’s Stationery Offce, London, 1987).

    Google Scholar 

  15. H. C. CHANDAN, Ph.D. Dissertation, Pennsylvania State University (1980).

  16. Z. LI and R. C. BRADT,J. Amer. Ceram. Soc. 72 (1989) 70.

    Google Scholar 

  17. A. ABUHASAN, C. BALASINGH and P. PREDECKI,ibid. 73 (1990) 2474.

    Google Scholar 

  18. C. N. TOMÉ, M. A. BERTINETTI and S. R. MacEWEN,ibid. 73 (1990) 3428.

    Google Scholar 

  19. I. LEVIN, W. D. KAPLAN, D. G. BRANDON and A. A. LAYYOUS,ibid. 78 (1995) 254.

    Google Scholar 

  20. S. MAJUMDAR, D. KUPPERMAN and J. SINGH,ibid. 71 (1988) 858.

    Google Scholar 

  21. S. MAJUMDAR and D. KUPPERMAN,ibid. 72 (1989) 312.

    Google Scholar 

  22. R. M. CANNON, in “Structure and properties of MgO and Al2 O3 ceramics”, Advances in Ceramics Vol. 10, edited by W. D. Kingery (The American Ceramic Society, Inc., Westerville, OH, 1984) p. 818.

    Google Scholar 

  23. I. LEVIN, W. D. KAPLAN, D. G. BRANDON and T. WIEDER,Acta Metall. 42 (1994) 1147.

    Google Scholar 

  24. Y. WANG and D. E. MIKKOLA,J. Amer. Ceram. Soc. 75 (1992) 3252.

    Google Scholar 

  25. J. B. WACHTMAN, Jr. and L. H. MAXWELL,ibid. 37 (1954) 291.

    Google Scholar 

  26. Idem.,ibid. 40 (1957) 377.

    Google Scholar 

  27. M. L. KRONBERG,ibid. 45 (1962) 274.

    Google Scholar 

  28. Idem. Acta Metall. 5 (1957) 507.

    Google Scholar 

  29. M. RÜHLE, private communication (1995).

  30. B. HOCKEY,J. Amer. Ceram. Soc. 54 (1971) 223.

    Google Scholar 

  31. E. J. WESTERMAN and F. V. LENEL,Trans. Met. Soc. AIME 218 (1960) 1010.

    Google Scholar 

  32. M. C. INMAN, K. M. ZWILSKY and D. H. BOONE,Trans. Amer. Soc. Metals 57 (1964) 701.

    Google Scholar 

  33. I. CHOU, H. M. CHAN and M. P. HARMER,J. Amer. Ceram Soc. 79 (1996) 2403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FANG, J., HARMER, M.P. & CHAN, H.M. Evaluation of subgrain formation in Al2O3–SiC nanocomposites. Journal of Materials Science 32, 3427–3433 (1997). https://doi.org/10.1023/A:1018672717239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018672717239

Keywords

Navigation