Skip to main content
Log in

Room temperature synthesis of crystalline metal oxides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crystalline titanium dioxide powders have been synthesized as either rutile or anatase from aqueous solutions at low temperatures (T≤100°C) and atmospheric pressure. First, a sol is prepared by the hydrolysis of a titanium alkoxide in an acidic solution. The sol is subsequently heated at different rates to produce the different crystalline phases of titanium dioxide. Powder characterization was carried out using X-ray diffraction, scanning electron microscopy and high resolution transmission electron microscopy. In general, the precipitate size was observed to be between 50 and 100 nm. Possible mechanisms involved in determining the crystal variants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ceramic Industry 140 (1993) 37.

  2. A. KAY and M. GRATZEL, J. Phys. Chem. 97 (1993) 6272.

    Article  CAS  Google Scholar 

  3. M. A. ANDERSON, M. J. GIESELMANN and Q. XU, J. Membrane Sci. 39 (1988) 243.

    Article  CAS  Google Scholar 

  4. K.-N. P. KUMAR, K. KEIZER, A. J. BURGGRAAF, T. OKUBO and H. NAGAMOTO, J. Mater. Chem. 3 (1993) 923.

    Article  CAS  Google Scholar 

  5. A. KATO, Y. TAKESHITA and Y. KATATAE, Mat. Res. Soc. Symp. Proc. 155 (1989) 13.

    Article  CAS  Google Scholar 

  6. J. S. REED, “Introduction to the principles of ceramic processing“ (John Wiley, New York, 1988) p. 41.

    Google Scholar 

  7. M. KIYAMA, T. AKITA, Y. TSUSUMI and T. TAKADA, Chem. Lett. (1972) 21.

  8. “Encyclopedia of chemical technology”, vol. 23, edited by H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg (John Wiley, New York, 1983) p. 139.

    Google Scholar 

  9. M. VISCA and E. MATIJEVIC, J. Colloid Interface Sci. 68 (1979) 308.

    Article  CAS  Google Scholar 

  10. E. MATIJEVIC, M. BUDNIK and L. MEITES, ibid. 61 (1977) 302.

  11. E. A. BARRINGER and H. K. BOWEN, J. Amer. Ceram. Soc. 65 (1982) C199.

    Article  CAS  Google Scholar 

  12. L. I. BEKKERMAN, I. P. DOBROVOL'SKII and A. A. IVAKIN, Russ. J. Inorg. Chem. 21 (1976) 233.

    Google Scholar 

  13. C. J. BRINKER and G. W. SCHERER “Sol–gel science” (Academic Press, Boston, 1990) p. 21.

    Google Scholar 

  14. J. LIVAGE, M. HENRY and C. SANCHEZ, Prog. Solid State Chem. 18 (1988) 259.

    Article  CAS  Google Scholar 

  15. B. E. YOLDAS, J. Non-Cryst. Solids 63 (1984) 145.

    Article  CAS  Google Scholar 

  16. Idem., J. Mater. Sci. 14 (1979) 1843.

    Article  CAS  Google Scholar 

  17. Idem., ibid. 21 (1986) 1087.

  18. B. D. FABES and D. R. UHLMANN, in “Innovations in materials processing using aqueous, colloid and surface chemistry“, edited by F. M. Doyle, S. Raghavan, P. Somasundaran and G. W. Warren (TMS, Warrendale, PA, 1988) p. 127.

    Google Scholar 

  19. K. D. KEEFER, in “Better ceramics through chemistry”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich, (Materials Research Society, Pittsburgh, PA, 1984) p. 15.

    Google Scholar 

  20. A. NAZERI and M. KAHN, Amer. Ceram. Soc. Bull. 72 (1993) 59.

    CAS  Google Scholar 

  21. B. E. YOLDAS, ibid. 54 (1975) 286.

  22. “Phase diagrams for ceramists”, edited by E. M. Levine and H. F. McMurdie (American Ceramic Society, Westerville, OH, 1975) Fig. 4258.

    Google Scholar 

  23. A. NAVROTSKY and O. J. KLEPPA, J. Amer. Ceram. Soc. 50 (1967) 626.

    Article  CAS  Google Scholar 

  24. ATOMS software

  25. R. C. WEAST (ed.), “Handbook of chemistry and physics” (CRC Press, Boca Raton, FL, 1984) B-154.

    Google Scholar 

  26. T. ZOLTAI and J. H. STOUT, “Mineralogy: concepts and principles” (Burgess Publishing Co., Minneapolis, MN, 1984) p. 411.

    Google Scholar 

  27. J. LIVAGE and M. HENRY, in “Ultrastructure processing of advanced ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (John Wiley, New York, 1988) p. 187.

    Google Scholar 

  28. J. R. BARTLETT and J. L. WOOLFREY, in “Chemical processing of advanced materials”, edited by L. L. Hench and J. K. West (John Wiley, New York, 1992) p. 247.

    Google Scholar 

  29. Q. J. WANG, S. C. MOSS, M. L. SHALZ, A. M. GLAESER, H. W. ZANDBERGEN and P. ZSCHACK, in “Physics and chemistry of finite systems: from clusters to crystals”, Vol. II, edited by P. Jena, S. N. Khanna and B. K. Rao (Kluwer Academic Publishers, Boston, 1992) p. 1287.

    Chapter  Google Scholar 

  30. L. H. EDELSON and A. GLAESER, J. Amer. Ceram. Soc. 71 (1988) 225.

    Article  CAS  Google Scholar 

  31. B. O'REGAN, J. MOSER, M. ANDERSON and M. GRÄTZEL, J. Phys. Chem. 94 (1990) 8720.

    Article  CAS  Google Scholar 

  32. L. PAULING, J. Amer. Chem. Soc. 51 (1929) 1010.

    Article  CAS  Google Scholar 

  33. P. MEAKIN, in “Kinetics of aggregation and gelation”, edited by F. Family and D. P. Landau (North Holland Physics Publishing, New York, 1984) p. 91.

    Chapter  Google Scholar 

  34. P. PIERANSKI, Contemp. Phys. 24 (1983) 25.

    Article  CAS  Google Scholar 

  35. E. A. HAUSER and D. S. LE BEAU, J. Phys. Chem. 42 (1938) 961.

    Article  CAS  Google Scholar 

  36. J. H. L. WATSON, W. HELLER and W. WOJTOWICZ, Science 109 (1949) 274.

    Article  CAS  Google Scholar 

  37. W. HELLER, in “Polymer colloids II”, edited by R. M. Fitch, (Plenum Press, New York, 1980) 153.

    Chapter  Google Scholar 

  38. A. BLEIR and R. M. CANNON in “Better ceramics through chemistry II”, edited by C. J. Brinker, D. E. Clark and D. R. Ulrich (Materials Research Society, Pittsburgh, PA, 1986) p. 71.

    Google Scholar 

  39. M. GOPAL, M.S. thesis, University of California at Berkeley, (1994).

  40. E. MATIJEVIC, Acc. Chem. Res. 14 (1981) 22.

    Article  CAS  Google Scholar 

  41. T. IIDA, K. YAMAOKA, S. NOZIRI and H. NOZAKI, Kogyo Kagaku Zasshi 69 (1966) A 118 (English abstract).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, M., Moberly Chan, W.J. & De Jonghe, L.C. Room temperature synthesis of crystalline metal oxides. Journal of Materials Science 32, 6001–6008 (1997). https://doi.org/10.1023/A:1018671212890

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018671212890

Keywords

Navigation