Skip to main content
Log in

Kinetic Arrest Originating in Competition Between Attractive Interaction and Packing Force

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss the situation where attractive and repulsive portions of the interparticle potential both contribute significantly to glass formation. We introduce the square-well potential as prototypical model for this situation, and reject the Baxter model as a useful model for comparison to experiment on glasses, based on our treatment within mode coupling theory. We present explicit results for various well widths, and show that, for narrow wells, there is a useful analytical formula that would be suitable for experimentalists working in the field of colloidal science. We raise the question as to whether, in a more exact treatment, the sticky-sphere limit might have an infinite glass transition temperature or a high but finite one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Götze, in Liquids, Freezing and Glass Transition, J. P. Hansen, D. Levesque, and J. Zinn-Justin, eds., Les Houches Session LI, 1989 (North-Holland, Amsterdam, 1991).

    Google Scholar 

  2. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 5A, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  3. U. Bengtzelius, W. Götze, and A. Sjölander, J. Phys. C 17:5915 (1984).

    Google Scholar 

  4. W. Götze and L. Sjogren, J. Phys. Cond. Matt. 1:4203 (1989); Phys. Rev. A 43:5442 (1991); Rep. Prog. Phys. 55:241 (1992).

    Google Scholar 

  5. W. Kob and H. C. Anderson, Phys. Rev E 51:4626 (1995) and references therein.

    Google Scholar 

  6. W. van Megen, S. M. Underwood, and P. N. Pusey, Phys. Rev. Lett. 67:1586 (1991); W. van Megen and S. M. Underwood, Phys. Rev. Lett. 70:2766 (1993).

    Google Scholar 

  7. F. Mezei, W. Knaak, and B. Farago, Phys. Rev. Lett. 58:571 (1987); Phys. Scr. T19:571 (1987).

    Google Scholar 

  8. E. Kartini, M. F. Collins, B. Collier, F. Mezei, and E. C. Svensson, Phys. Rev. B 54:6296 (1996).

    Google Scholar 

  9. D. Richter, B. Frick, and B. Farago, Phys. Rev. Lett. 61:2465 (1988).

    Google Scholar 

  10. B. Frick, D. Richter, W. Petry, and U. Buchenau, Z. Phys. B 70:73 (1988).

    Google Scholar 

  11. F. Fujara and W. Petry, Europhys. Lett. 4:921 (1987).

    Google Scholar 

  12. A. Arbe, U. Buchenau, L. Willner, D. Richter, B. Farago, and J. Colmenero, Phys. Rev. Lett. 76:1872 (1996).

    Google Scholar 

  13. E. Wölfle and B. Stoll, Colloid Polym. Sci. 258:300 (1980); I. C. Halalay, J. Phys. Cond. Matt. 8:6157 (1996).

    Google Scholar 

  14. J. L. Barrat, W. Gotze, and A. Latz, J. Phys. Cond. Matt. 1:7163 (1989).

    Google Scholar 

  15. L. Fabbian, W. Götze, F. Sciortino, P. Tartaglia, and F. Thiery, Phys. Rev. E 59:1347(1999).

    Google Scholar 

  16. J. Berghenholtz and M. Fuchs, Phys. Rev. E 59:5706 (1999).

    Google Scholar 

  17. R. J. Baxter, J. Chem. Phys. 49:2770 (1968).

    Google Scholar 

  18. J. K. Percus and G. J. Yevick, Phys. Rev. 110:1 (1958).

    Google Scholar 

  19. G. Stell, J. Stat. Phys. 63:1203 (1991); B. Borstnik, C. G. Jesudason, and G. Stell, J. Chem. Phys. 106:9762 (1997); R. P. Sear, J. Phys. Cond. Matt., in press (1999).

    Google Scholar 

  20. C. Caccamo, Phys. Rep. 274:1 (1996).

    Google Scholar 

  21. H. N. W. Lekkerker, W. C. K. Poon, P. N. Pusey, A. Stroobants, and P. B. Warren, Europhys. Lett. 20:559 (1992).

    Google Scholar 

  22. C. F. Tejero, A. Daanoun, H. N. W. Lekkerker, and M. Baus, Phys. Rev. Lett. 73:752 (1994).

    Google Scholar 

  23. N. A. M. Verhaegh, D. Asnaghi, H. N. W. Lekkerker, M. Giglio, and L. Cipelletti, Physica A 242:104 (1997).

    Google Scholar 

  24. H. Verdun and J. K. GDhont, J. Colloid Interface Sci. 172:425 (1995).

    Google Scholar 

  25. K. Kawasaki, Physica A 243:25 (1997).

    Google Scholar 

  26. R. J. Baxter, Phys. Rev. 154:170 (1967).

    Google Scholar 

  27. S. V. G. Menon, C. Manohar, and K. Srinivasa Rao, J. Chem. Phys. 95:9186 (1991).

    Google Scholar 

  28. Y. C. Liu, S. H. Chen, and J. S. Huang, Phys. Rev. E 54:1698 (1996).

    Google Scholar 

  29. F. Sciortino, P. Gallo, P. Tartaglia, and S.-H. Chen, Phys. Rev. E 54:6331 (1996).

    Google Scholar 

  30. S. Fishman and M. Fisher, Physica A 108:1 (1981).

    Google Scholar 

  31. F. Gallerani, G. Lo Vecchio, and L. Reatto, Phys. Rev. A 31:511 (1985).

    Google Scholar 

  32. F. Gallerani, G. Lo Vecchio, and L. Reatto, Phys. Rev. A 32:2526 (1985).

    Google Scholar 

  33. E. Zaccarelli, Thesis (Universita “La Sapienza,” Rome, 1999), to be published.

  34. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foffi, G., Zaccarelli, E., Sciortino, F. et al. Kinetic Arrest Originating in Competition Between Attractive Interaction and Packing Force. Journal of Statistical Physics 100, 363–376 (2000). https://doi.org/10.1023/A:1018660200206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018660200206

Navigation