Skip to main content
Log in

Fluctuations-Inclusive Approach to Phase Transitions in Binary Mixtures

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The hierarchical reference theory of fluids (HRT) is applied to the study of the phase diagram of binary mixtures of simple fluids. This approach implements the renormalization group machinery into a liquid-state theory in order to systematically deal with the effect of long-range correlations which play a crucial role in the onset of criticality and phase separation. The effect of fluctuations is embodied in a partial differential equation (PDE) for the free energy of the mixture. Recently, a robust numerical algorithm has been developed which enabled us to integrate this PDE on a substantial density mesh even at low temperature, when the coexistence region spreads over most of the density– concentration plane.We have considered a model mixture of spherical particles interacting via a hard-core plus attractive tail potential, and adjusted the particle diameters σ 1σ 2 and the strengths of the attractive interactions ε 11ε 22ε 12 so as to mimic mixtures of simple fluids such as argon–krypton or neon–krypton. In the latter case the theory reproduces the occurrence of a minimum in the critical temperature (the so-called critical double point) and of immiscibility at high pressure. We have also studied the phase diagram of a symmetric mixture such that σ 1=σ 2 and ε 11=ε 22 as the ratio δ=ε 12/ε 11 is varied. In particular, we find that, in agreement with the mean-field picture, by decreasing δ, a critical endpoint occurring at equal species concentration is turned into a tricritical point. An interesting feature of the HRT is that, whenever phase coexistence occurs, the conditions of phase equilibria are implemented by the theory itself, without any need of enforcing them a posteriori. This allows one to straightforwardly map the phase diagram and the critical lines of the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. See, for instance, J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, Butterworths, London, 1982.

  2. A. Parola and L. Reatto, Nuovo Cimento D 6, 215 (1985).

    Google Scholar 

  3. L. Belloni, J. Chem. Phys. 98, 8080 (1993). J. S. Høye, E. Lomba, and G. Stell, Mol. Phys. 79, 523 (1993).

    Google Scholar 

  4. A. Parola and L. Reatto, Phys. Rev. A 44, 6600 (1991).

    Google Scholar 

  5. A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).

    Google Scholar 

  6. M. E. Fisher, Phys. Rev. 176, 257 (1968).

    Google Scholar 

  7. J. A. Schouten, A. Deerenberg, and N. J. Trappeniers, Physica 81A, 151 (1975).

  8. N. J. Trappeniers and J. A. Schouten, Physica 73, 546 (1974).

    Google Scholar 

  9. C. K. Hall and G. Stell, Phys. Rev. B 11, 224 (1975).

    Google Scholar 

  10. E. Lomba, J. J. Weis, N. G. Almarza, F. Bresme, and G. Stell, Phys. Rev. E 49, 5169 (1994). E. Lomba, J. J. Weis, and G. Stell, Phys. Rev. E 50, 3853 (1994).

    Google Scholar 

  11. N. B. Wilding, F. Schmid, and P. Nielaba, Phys. Rev. E 58, 2201 (1998).

    Google Scholar 

  12. A. Parola, D. Pini, and L. Reatto, unpublished.

  13. E. W. Grundke and D. Henderson, Mol. Phys. 24, 269 (1972). L. L. Lee and D. Levesque, Mol. Phys. 26, 1351 (1973).

    Google Scholar 

  14. See, for instance, J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London, 1986.

  15. A. Meroni, A. Parola, and L. Reatto, Phys. Rev. A 42, 6104 (1990).

    Google Scholar 

  16. M. Tau, A. Parola, D. Pini, and L. Reatto, Phys. Rev. E 52, 2644 (1995).

    Google Scholar 

  17. W. F. Ames, Numerical Methods for Partial Differential Equations, Academic Press, New York, 1977.

    Google Scholar 

  18. J. A. Schouten, Phys. Rep. 172, 35 (1989).

    Google Scholar 

  19. A. Lotfi, J. Vrabec, and J. Fischer, Mol. Phys. 76, 1319 (1992).

    Google Scholar 

  20. H. M. Schaink and C. Hoheisel, J. Chem. Phys. 97, 8561 (1992). E. Z. Hamad, J. Chem. Phys. 105, 3222 (1996). The case of a mixture of non-additive hard spheres with equal diameters has been studied in detail by P. Ballone, G. Pastore, G. Galli, and D. Gazzillo, Mol. Phys. 59, 275 (1986).

    Google Scholar 

  21. C. Hoheisel and U. Deiters, Mol. Phys. 37, 95 (1979).

    Google Scholar 

  22. S. M. Foiles and N. W. Ashcroft, J. Chem. Phys. 75, 3594 (1981).

    Google Scholar 

  23. J. Kestin, S. T. Ro, and W. Wakeham, Physica 58, 165 (1972). J. M. Hellemans, J. Kestin, and S. T. Ro, Physica 71, 1 (1974).

    Google Scholar 

  24. G. J. Zarragoicoechea, O. H. Scalise, A. E. Rodríguez, and R. D. Gianotti, J. Chem. Phys. 91, 7130 (1989).

    Google Scholar 

  25. I. R. McDonald, Mol. Phys. 23, 41 (1972).

    Google Scholar 

  26. G. J. Zarragoicoechea and O. H. Scalise, J. Chem Phys. 107, 4358 (1997).

    Google Scholar 

  27. N. B. Wilding, Phys. Rev. E 55, 6624 (1997).

    Google Scholar 

  28. C. Caccamo, D. Costa, and G. Pellicane, J. Chem. Phys. 109, (1998).

  29. D. G. Green, G. Jackson, E. de Miguel, and L. F. Rull, J. Chem. Phys. 101, 3190 (1994). E. de Miguel, E. M. del Río, and M. M. Telo da Gama, J. Chem Phys. 103, 6188 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pini, D., Parola, A. & Reatto, L. Fluctuations-Inclusive Approach to Phase Transitions in Binary Mixtures. Journal of Statistical Physics 100, 13–38 (2000). https://doi.org/10.1023/A:1018657307050

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018657307050

Navigation