Skip to main content

Solubility of lanthanum in strontium titanate in oxygen-rich atmospheres

Abstract

Perovskite (ABO3)-type lanthanum substituted strontium titanate ceramics (lanthanum content x), which had been sintered in pure oxygen at 1400 °C, were investigated from x = 0 up to x = 0.6 by light optical and scanning electron microscopic means in conjunction with X-ray analysis, X-ray diffraction, and pyconometry in order to determine the mechanism being responsible for the compensation of the electronic excess charge resulting from the "donor" lanthanum. A pure strontium vacancy compensation mechanism was observed for lanthanum contents up to x = 0.3. Above x = 0.4 titanium vacancies occur additionally but their concentration remains negligible compared to the predominating strontium vacancies. No indication of a solubility limit of lanthanum at x = 0.4, as stated in former works was observed. At x = 0.5 and 0.6 the lattice structure was found to be slightly distorted, tetragonally and orthorhombically, respectively. The lattice parameter obeys Vegard’s law up to the end member La2/31/3TiO3 (□: vacant site). These results were completely confirmed by pycnometry data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. WASER, Solid State Ionics 95 (1995) 89.

    Article  Google Scholar 

  2. 2.

    J. GERBLINGER and H. MEIXNER, J. Appl. Phys. 67 (1990) 7453.

    CAS  Article  Google Scholar 

  3. 3.

    J. GERBLINGER, K. H. HÄRDTL, H. MEIXNER and R. AIGNER, in “Sensors. A comprehensive series”, Vol. 8, edited by W. Göpel, J. Hesse and N. Zemel (VCH, Weinheim, Germany, 1995) p. 182.

    Google Scholar 

  4. 4.

    J. FUNAYAMA, M. MASUYAMA and N. YAMAOKA, in “Advances in varistor technology. Ceramic transactions”, Vol. 3, edited by L. M. Levinson (New York, 1989) p. 381.

  5. 5.

    H. ARAI and T. SEIYAMA, in “Sensors. A comprehensive survey”, Vol. 3, edited by W. Göpel, J. Hesse and J. N. Zemel (VCH, Weinheim, Germany, 1992) p. 981.

    Google Scholar 

  6. 6.

    U. BALACHANDRAN and N. G. EROR, J. Electrochem. Soc. 129 (1982) 1021.

    CAS  Article  Google Scholar 

  7. 7.

    U. KIESSLING, J. CLAUS and G. BORCHARDT, J. Amer. Ceram. Soc. 77 (1994) 2188.

    CAS  Article  Google Scholar 

  8. 8.

    K. UEMATSU, O. SAKURAI, N. MIZUTANI and M. KATO, J. Mater. Sci. 19 (1984) 3671.

    CAS  Article  Google Scholar 

  9. 9.

    J. DANIELS and K. H. HÄRDTL, Philips Res. Rep. 31 (1976) 489.

    CAS  Google Scholar 

  10. 10.

    R. MOOS, A. GNUDI and K. H. HÄRDTL, J. Appl. Phys. 78 (1995) 5042.

    CAS  Article  Google Scholar 

  11. 11.

    R. MOOS and K. H. HÄRDTL, ibid. 80 (1996) 393.

    CAS  Article  Google Scholar 

  12. 12.

    H. M. CHAN, M. P. HARMER and D. M. SMYTH, J. Amer. Ceram. Soc. 69 (1986) 507.

    CAS  Article  Google Scholar 

  13. 13.

    R. WERNICKE, PhD thesis, Aachen, Germany, 1975 (in German).

  14. 14.

    M. M. NASRALLAH, H. U. ANDERSON, A. K. AGARWAL and B. F. FLANDERMEYER, J. Mater. Sci. 19 (1984) 3159.

    CAS  Article  Google Scholar 

  15. 15.

    G. H. JONKER and E. E. HAVINGA, Mater. Res. Bull. 17 (1982) 345.

    CAS  Article  Google Scholar 

  16. 16.

    B. F. FLANDERMEYER, A. K. AGARWAL, H. U. ANDERSON and M. M. NASRALLAH, J. Mater. Sci. 19 (1984) 2593.

    CAS  Article  Google Scholar 

  17. 17.

    D. MAKOVEC, Z. SAMARDZIJA, U. DELALUT and D. KOLAR, J. Amer. Ceram. Soc. 78 (1995) 2193.

    CAS  Article  Google Scholar 

  18. 18.

    W. MENESKLOU, PhD thesis, Karlsruhe, Germany, 1996 (in German).

  19. 19.

    R. MOOS, PhD thesis, in “Fortschritt-Berichte VDI”, Series 5, Nr. 362, (VDI-Verlag, Düsseldorf, Germany, 1994) (in German).

    Google Scholar 

  20. 20.

    T. Y. TIEN and F. A. HUMMEL, Trans. Brit. Ceram. Soc. 66 (1967) 233.

    Google Scholar 

  21. 21.

    U. BALACHANDRAN and N. G. EROR, J. Amer. Ceram. Soc. 64 (1981) C75.

    CAS  Article  Google Scholar 

  22. 22.

    M. ABE and K. M. UCHINO, Mater. Res. Bull. 9 (1974) 147.

    CAS  Article  Google Scholar 

  23. 23.

    J. DANIELS, K. H. HÄRDTL and R. WERNICKE, Philips Tech. Rev. 38 (1978) 73.

    Google Scholar 

  24. 24.

    B. HUYBRECHTS, K. ISHIZAKI and M. TAKATA, J. Mater. Sci. 30 (1995) 2463.

    CAS  Article  Google Scholar 

  25. 25.

    D. HENNINGS and K. H. HÄRDTL, Phys. status solidi (a) 3 (1970) 465.

    CAS  Google Scholar 

  26. 26.

    D. HENNINGS, Mater. Res. Bull. 6 (1971) 329.

    CAS  Article  Google Scholar 

  27. 27.

    K. H. HÄRDTL and D. HENNINGS, J. Amer. Ceram. Soc. 55 (1972) 230.

    Article  Google Scholar 

  28. 28.

    S. N. RUDDLESDEN and P. POPPER, Acta Crystallogr. 11 (1958) 54.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MOOS, R., BISCHOFF, T., MENESKLOU, W. et al. Solubility of lanthanum in strontium titanate in oxygen-rich atmospheres. Journal of Materials Science 32, 4247–4252 (1997). https://doi.org/10.1023/A:1018647117607

Download citation

Keywords

  • Strontium
  • Lanthanum
  • Strontium Titanate
  • Charge Carrier Density
  • Lanthanum Content