Skip to main content
Log in

Scaling Properties of an Inviscid Mean-Motion Fluid Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An inviscid two-dimensional fluid model with nonlinear dispersion that arises simultaneously in coarse-grained descriptions of the dynamics of the Euler equation and in the description of non-Newtonian fluids of second grade is considered. The scaling of the equilibrium states of this model for conserved energy and enstrophy retains the corresponding scaling for the Euler equations on the large scales and at the same time greatly deemphasizes the importance of small scales. This is the first clear demonstration of the beneficial effect of nonlinear dispersion in the model, and should highlight its utility as a subgrid model in more realistic situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. D. D. Holm, J. E. Marsden, and T. S. Ratiu, Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys Rev. Lett. 80:4273–4277 (1998).

    Google Scholar 

  2. S. Shkoller, Geometry and curvature of diffeomorphism groups with H1 metric and mean hydrodynamics, J. Func. Anal. 160:337–365 (1998).

    Google Scholar 

  3. D. Cioranescu and V. Girault, Solutions variationnelles et classiques d'une famille de guides de grade deux, Comptes Rendues de l'Acad. Sci. de Paris Seérie 1 322:1163–1168 (1996).

    Google Scholar 

  4. R. S. Rivlin and J. L. Ericksen, Stress-deformation relations for isotropic materials, J. Rat. Mech. Anal. 4:323–425 (1955).

    Google Scholar 

  5. J. E. Dunn and R. L. Fosdick, Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade, Arch. Rat. Mech. Anal. 56:191–252 (1974).

    Google Scholar 

  6. D. Cioranescu and E. H. Ouazar, Existence et unicite_ pour les fluides de second grade, Comptes Rendues de l'Acad. Sci. de Paris Seérie 1 298:285–87 (1984).

  7. S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne, The Camassa_Holm equations as a closure model for turbulent channel flow, Phys. Rev. Lett. 81:5338–5341 (1998).

    Google Scholar 

  8. S. Chen, D. D. Holm, L. Margolin, and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model, Physica D 133:66–83 (1999).

    Google Scholar 

  9. B. T. Nadiga and S. Shkoller, Mean motion, second-grade fluids, and the vortex-blob method, preprint (1999).

  10. R. H. Kraichnan and D. Montgomery, Two-dimensional turbulence, Rep. Prog. Phys. 43:547–619 (1980).

    Google Scholar 

  11. R. Robert and J. Sommeria, Statistical equilibrium states for two-dimensional flows, J. Fluid Mech. 229:291–310 (1991).

    Google Scholar 

  12. J. Miller, P. B. Weichman, and M. C. Cross, Statistical-mechanics, Euler equation, and Jupiter red spot, Phys. Rev. A 45:2328–2359 (1992).

    Google Scholar 

  13. S. Shkoller, personal communication.

  14. C. Basdevant and R. Sadourny, Ergodic properties of inviscid truncated models of twodimensional incompressible flows, J. Fluid Mech. 69:673–688 (1975).

    Google Scholar 

  15. D. G. Fox and S. A. Orszag, Inviscid dynamics of two-dimensional turbulence, Phys. Fluids 16:169–171 (1973).

    Google Scholar 

  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran 77 (Cambridge University Press, 1992), Chap. 16, pp. 708–716.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadiga, B.T. Scaling Properties of an Inviscid Mean-Motion Fluid Model. Journal of Statistical Physics 98, 935–948 (2000). https://doi.org/10.1023/A:1018644029435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018644029435

Navigation