Skip to main content
Log in

Charge Fluctuations in the Two-Dimensional One-Component Plasma

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study, via computer simulations, the fluctuations in the net electric charge in a two-dimensional, one component plasma (OCP) with uniform background charge density − in a region Λ inside a much larger overall neutral system. Setting e=1, this is the same as the fluctuations in N Λ, the number of mobile particles of charge e. As expected, the distribution of N Λ has, for large Λ, a Gaussian form with a variance which grows only as |∂Λ|, where |∂Λ| is the length of the perimeter of Λ. The properties of this system depend only on the coupling parameter Γ=kT, which is the same as the reciprocal temperature in our units. Our simulations show that when the coupling parameter Γ increases, (Γ) decreases to an asymptotic value (∞)∼(2)/2 which is equal (or very close) to that obtained for the corresponding variance of particles on a rigid triangular lattice. Thus, for large Γ, the characteristic length ξ L=2/ρ associated with charge fluctuations behaves very differently from that of the Debye length, ξ D∼1/\(\sqrt \Gamma \), which it approaches as Γ→0. The pair correlation function of the OCP is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Stell, J. Stat. Phys. 78:197 (1995); G. Stell, in New Approaches to Problems in Liquid State Theory, C. Caccamo, J.-P. Hansen and G. Stell, eds. (Kluwer Academic Publishers, Dordrecht, 1999).

    Google Scholar 

  2. F. Stillinger and R. Lovett, J. Chem. Phys. 48:3858 (1968).

    Google Scholar 

  3. H. van Beijeren and B. U. Felderhof, Mol. Phys. 38:1179 (1979); Ch. Gruber, Ch. Lugrin, and Ph. A. Martin, J. Stat. Phys. 22:193 (1980); Ph. A. Martin and T. Yalcin, J. Stat. Phys. 22:435 (1980).

    Google Scholar 

  4. J. L. Lebowitz, Phys. Rev. A 72:773 (1983); J. L. Lebowitz, in Strongly Coupled Coulomb Systems, G. J. Kalman, J. M. Rommel, and K. Blagoev, eds. (Plenum Press, New York and London, 1998).

    Google Scholar 

  5. Ph. A. Martin, Rev. Mod. Phys. 60:1075 (1988).

    Google Scholar 

  6. D. Brydges and Ph. A. Martin, J. Stat. Phys. 96:1163 (1999).

    Google Scholar 

  7. Ch. Gruber, J. L. Lebowitz, and Ph. A. Martin, J. Chem. Phys. 75:994 (1981); L. Blum, Ch. Gruber, J. L. Lebowitz, and Ph. A. Martin, Phys. Rev. Lett. 48:1767 (1982).

    Google Scholar 

  8. S. Bekiranov and M. E. Fisher, Phys. Rev. Lett. 81:5836 (1998).

    Google Scholar 

  9. P. J. Forrester, B. Jancovici, and G. Téllez, J. Stat. Phys. 84:359 (1996).

    Google Scholar 

  10. M. L. Mehta, Random Matrices, 2nd edition (Academic Press, 1990); O. Costin and J. L. Lebowitz, Phys. Rev. Lett. 75:69 (1995).

  11. D. C. Brydges and P. Federbush, Commun. Math. Phys. 73:197 (1980); D. C. Brydges and P. Federbush, in Rigorous Atomic and Molecular Physics, G. Velo and A. Wightman, eds. (Erice Summer School, Plenum Press, Oxford), pp. 371-439.

    Google Scholar 

  12. J. Imbrie, Commun. Math. Phys. 87:515 (1983).

    Google Scholar 

  13. J. L. Lebowitz and E. H. Lieb, Phys. Rev. Lett. 22:631 (1969); E. H. Lieb and J. L. Lebowitz, Adv. Math. 9:316 (1972); E. H. Lieb, Rev. Mod. Phys. 48:553 (1976).

    Google Scholar 

  14. M. Baus and J. P. Hansen, Phys. Rep. 59:1 (1980).

    Google Scholar 

  15. H. E. DeWitt and W. K. Slattery (and references there), in Strongly Coupled Coulomb Systems, G. J. Kalman, J. M. Rommel, and K. Blagoev, eds. (Plenum Press, New York and London, 1998).

    Google Scholar 

  16. J. Beck, Acta Math. 1:159 (1987).

    Google Scholar 

  17. D. G. Kendall and R. A. Rankin, Quart. J. Math. (Oxford) 4:178 (1953); see also P. Bleher, F. Dyson, and J. L. Lebowitz, Phys. Rev. Lett. 71:3047 (1993).

    Google Scholar 

  18. M. Aizenman, S. Goldstein, and J. L. Lebowitz, in preparation; M. Aizenman and Ph. A. Martin, Commun. Math. Phys. 78:99 (1980).

    Google Scholar 

  19. B. Jancovici, Phys. Rev. Lett. 46:366 (1981).

    Google Scholar 

  20. S. W. de Leeuw and J. W. Perram, Physica 113A:546 (1982).

    Google Scholar 

  21. J. M. Caillol, D. Levesque, J. J. Weis, and J. P. Hansen, J. Stat. Phys. 28:325 (1982).

    Google Scholar 

  22. J. Beck, private communication.

  23. B. Jancovici, J. L. Lebowitz, and G. Manificat, J. Stat. Phys. 72:773 (1993).

    Google Scholar 

  24. J. Piasecki and D. Levesque, J. Stat. Phys. 47:489 (1987).

    Google Scholar 

  25. R. J. F. Leote de Carvalho, R. Evans, and Y. Rosenfeld, Phys. Rev. E 59:1435 (1999).

    Google Scholar 

  26. c.f. M. E. Fisher, J. Stat. Phys. 75:1 (1994).

    Google Scholar 

  27. J. Fro¢hlich and T. Spencer, Commun. Math. Phys. 81:527 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levesque, D., Weis, JJ. & Lebowitz, J.L. Charge Fluctuations in the Two-Dimensional One-Component Plasma. Journal of Statistical Physics 100, 209–222 (2000). https://doi.org/10.1023/A:1018643829340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018643829340

Navigation