Skip to main content
Log in

New Discrete Model Boltzmann Equations for Arbitrary Partitions of the Velocity Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Modified discrete Boltzmann equations for arbitrary partitions of the velocity space are established. The new equations can be derived from the continuous Boltzmann equation and are a generalization of previous discrete-velocity models. They preserve mass, momentum, and energy, and an H-theorem holds. The new model equations are tested by comparing their solutions with the analytical ones of the continuous Boltzmann equation for the Krook–Wu and the very hard particle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Cercignani, Ludwig Boltzmann. The Man Who Trusted Atoms (Oxford University Press, Oxford, 1998).

    Google Scholar 

  2. M. H. Ernst, Nonlinear model Boltzmann equations and exact solutions, Phys. Rep. 78:1–171 (1981).

    Google Scholar 

  3. R. Monaco and L. Preziosi, Fluid Dynamic Applications of the Discrete Boltzmann Equation (World Scientific, Singapore, 1991).

    Google Scholar 

  4. N. Bellomo and T. Gustafsson, On the initial and initial-boundary value problem for the discrete Boltzmann equation, Review. Math. Phys. 3:137–162 (1992).

    Google Scholar 

  5. J. C. Maxwell, Scientific Papers II (Cambridge University Press, Cambridge, 1890).

    Google Scholar 

  6. J. E. Broadwell, Study of rarefied shear flow by the discrete velocity method, J. Fluid Mech. 19:401–414 (1964).

    Google Scholar 

  7. J. E. Broadwell, Shock structure in a simple discrete velocity gas, Phys. Fluids 7:1243–1248 (1964).

    Google Scholar 

  8. R. Gatignol, Théorie Cinétique des Gaz à Répartition Discrè te de Vitesses (Springer, Berlin, 1975).

    Google Scholar 

  9. H. Cabannes, Etude de la propagation des ondes dans un gaz à 14 vitesses, J. de Mécanique 14:705–744 (1975).

    Google Scholar 

  10. H. Cornille, Nested-squares discrete Boltzmann models with arbitrary number of velocities satisfying a continuous theory relation, Trans. Th. Stat. Phys. 26:359–371 (1997).

    Google Scholar 

  11. H. Cabannes, The Discrete Boltzmann Equation (Theory and Application) (University of California, Berkeley, 1980).

    Google Scholar 

  12. A. V. Bobylev, A. Palczewski, and J. Schneider, Discretization of the Boltzmann equation and discrete velocity models, in Rarefied Gas Dynamics 19, J. Harvey and G. Lord, eds. (Oxford University Press, Oxford, 1995), pp. 857–863.

    Google Scholar 

  13. A. V. Bobylev, A. Palczewski, and J. Schneider, On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. Paris 320:639–644 (1995).

    Google Scholar 

  14. A. Palczewski, J. Schneider, and A. V. Bobylev, A consistency result for a discrete-velocity model of the Boltzmann equation, SIAM J. Numer. Anal. 34:1865–1883 (1997). 439 Discrete Model Boltzmann Equations

    Google Scholar 

  15. T. Inamuro and B. Sturtevant, Numerical study of discrete-velocity gases, Phys. Fluids A 2:2196–2203 (1990).

    Google Scholar 

  16. F. Rogier and J. Schneider, A direct method for solving the Boltzmann equation, Trans. Th. Stat. Phys. 23:313–338 (1994).

    Google Scholar 

  17. C. Buet, A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Trans. Th. Stat. Phys. 25:33–60 (1996).

    Google Scholar 

  18. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1988).

    Google Scholar 

  19. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer, New York, 1994).

    Google Scholar 

  20. C. Cercignani, Temperature, entropy, and kinetic theory, J. Stat. Phys. 87:1097–1109 (1997).

    Google Scholar 

  21. P. Griehsnig, Kinetische Beschreibung der Relaxation innerer Freiheitsgrade in einem Gas mittels Boltzmannscher Transportgleichungen, PhD thesis (Technical University of Graz, 1993).

  22. H. Nievoll, P. Griehsnig, P. Reiterer, and F. Schürrer, A general discrete velocity model including internal degrees of freedom, Complex Systems 10:417–435 (1996).

    Google Scholar 

  23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  24. M. Krook and T. T. Wu, Formation of Maxwellian tails, Phys. Rev. Lett. 36:1107–1109 (1976).

    Google Scholar 

  25. A. V. Bobylev, Exact solutions of the Boltzmann equation, Sov. Phys. Dokl. 20:822–824 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiterer, P., Reitshammer, C., Schürrer, F. et al. New Discrete Model Boltzmann Equations for Arbitrary Partitions of the Velocity Space. Journal of Statistical Physics 98, 419–440 (2000). https://doi.org/10.1023/A:1018643409890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018643409890

Navigation