Skip to main content
Log in

On the Convergence of the Boltzmann Equation for Semiconductors Toward the Energy Transport Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The diffusion limit of the Boltzmann equation of semiconductors is analyzed. The dominant collisions are the elastic collisions on one hand and the electron–electron collisions with the Pauli exclusion terms on the other hand. Under a nondegeneracy hypothesis on the distribution function, a lower bound of the entropy dissipation rate of the leading term of the Boltzmann kernel for semiconductors in terms of a distance to the space of Fermi–Dirac functions is proved. This estimate and a mean compactness lemma are used to prove the convergence of the solution of the Boltzmann equation to a solution of the energy transport model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Apanovich, E. Lyumskis, B. Polsky, A. Shur, and P. Blakey, Steady-state and transient analysis of submicron devices using energy-balance and simplified hydrodynamic models, IEEE Trans. CAD of Integ. Circuits Syst. 13:702–711 (1994).

    Google Scholar 

  2. C. Bardos, F. Golse, B. Perthame, and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal. 77(2):434–460 (1988).

    Google Scholar 

  3. N. Ben Abdallah and P. Degond, On a hierarchy of macroscopic models for semiconductors, J. Math. Phys. 37(7):3306–3333 (1996).

    Google Scholar 

  4. N. Ben Abdallah, P. Degond, and S. Genieys, An energy transport model for semiconductors derived from the Boltzmann equation, J. Stat. Phys. 84(1–2):205–231 (1996).

    Google Scholar 

  5. H. Brezis, Analyse Fonctionnelle, Thöorie et Applications (Masson, Paris, 1983).

    Google Scholar 

  6. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, Berlin, 1988).

    Google Scholar 

  7. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases (Springer Verlag, New York, 1994).

    Google Scholar 

  8. D. Chen, E. Kan, U. Ravaioli, C. Shu, and R. Dutton, An improved energy transport model including nonparabolicity and non-maxwellian distribution effects, IEEE Electr. Dev. Letters 13:26–28 (1992).

    Google Scholar 

  9. P. Degond, S. Gönieys, and A. Jüngel, An existence and uniqueness result for the energy transport model in semiconductor theory, C. R. Acad. Sci. Sör. I 324:29–34 (1997).

    Google Scholar 

  10. P. Degond, S. Génieys, and A. Jüngel, An existence result for strongly coupled parabolic system arising in non equilibrium thermodynamics, C. R. Acad. Sci. Sör. I 325:227–232 (1997).

    Google Scholar 

  11. P. Degond, S. Génieys, and A. Jüngel, A steady-state system in non equilibrium thermodynamics including thermal and electrical effects, Math. Meth. Appl. Sci. 21:1399–1413 (1998).

    Google Scholar 

  12. P. Degond, S. Génieys, and A. Jüngel, A system of parabolic equations in non equilibrium thermodynamics including thermal and electrical effects, J. Math. Pures Appl. 76:991–1015 (1997).

    Google Scholar 

  13. P. Degond, A. Jüngel, and P. Pietra, Numerical discretization of energy-transport models for semiconductors with non-parabolic band structure, article in preparation.

  14. P. Degond and C. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys. 39(9):4634–4663 (1998).

    Google Scholar 

  15. L. Desvillettes, Entropy dissipation rate and convergence in kinetic equations, Comm. Math. Phys. 123:687–702 (1989).

    Google Scholar 

  16. R. Di Perna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98(3):511–547 (1989).

    Google Scholar 

  17. J. Dolbeault, Kinetic models and quantum effects: A modified Boltzmann equation for Fermi–Dirac particles, Arch. Rat. Mech. Anal. 127(2):101–131 (1994).

    Google Scholar 

  18. H. Federer, Geometric Measure Theory (Springer-Verlag, Berlin, 1969).

    Google Scholar 

  19. S. Génieys, Energy transport model for a nondegenerate semiconductor. Convergence of the Filbert expansion in the linearized case, Asympt. Anal. 17(4):279–308 (1998).

    Google Scholar 

  20. F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 77:110–125 (1988).

    Google Scholar 

  21. F. Golse and F. Poupaud, Limite fluide des equations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asympt. Anal. 6:135–160 (1992).

    Google Scholar 

  22. K. Hamdache, Initial boundary value problems for Boltzmann equation. Global existence of weak solutions, Arch. Rat. Mech. Anal. 119:309–353 (1992).

    Google Scholar 

  23. A. Marrocco, P. Montarnal, and B. Perthame, Simulation of the energy-transport and simplified hydrodynamic models for semiconductor devices using mixed finite elements, Proceedings ECCOMAS 96, London, 1996. John Wiley.

  24. C. Schmeiser and A. Zwirchmayr, Convergence of moment methods for linear kinetic equations, SIAM J. Numer. Anal. 36(1):74–88 (1999).

    Google Scholar 

  25. K. Souissi, F. Odeh, H. Tang, and A. Gnudi, Comparative studies of hydrodynamic and energy transport models, COMPEL 13:439–453 (1994).

    Google Scholar 

  26. R. Stratton, Diffusion of hot and cold electrons in semiconductor barriers, Phys. Rev. 126:2002–2014 (1962).

    Google Scholar 

  27. R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications (North-Holland, 1984).

  28. B. Wennberg, On an entropy dissipation inequality for the Boltzmann equation, C. R. Acad. Sci. Sör. I 315(13):1441–1446 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, N.B., Desvillettes, L. & Génieys, S. On the Convergence of the Boltzmann Equation for Semiconductors Toward the Energy Transport Model. Journal of Statistical Physics 98, 835–870 (2000). https://doi.org/10.1023/A:1018635827617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018635827617

Navigation