Skip to main content
Log in

Fatigue fracture mechanisms and fractography of short-glassfibre-reinforced polyamide 6

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An adaptation to existing failure models for fatigue fracture of short-fibre-reinforced thermoplastics is presented. This was based on results using some new experimental methods. These results led to the conclusion that cracks in glassfibre-reinforced polyamide 6 (conditioned to equilibrium water content) remain bridged by plastically drawn matrix material and/or fibres until just prior to final fracture. In this article, emphasis will be on the fractographic evidence for the existence of this failure mechanism. Also some other phenomena in glassfibre-reinforced polyamide will be mentioned. Apart from the normal fractographic investigations, specimens were cryogenically fractured after fatigue, revealing the structure of damage, before failure. Both fracture surfaces were compared, showing that only a small fraction of the fibres is broken in fatigue; mostly the fibres are pulled out. The mechanism consists of the following steps: damage begins with void formation, mainly at fibre ends; these voids coalesce into small cracks. These cracks, however, do not grow into one full crack, but the crack walls remain connected at several points. This is contrary to the fracture mechanism for the dry as-moulded material. When the material is dry as moulded, the matrix material cracks, without showing much ductility, and no bridges are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Akay and D. Barkley, J. Mater. Sci. 26 (1991) 2731.

    Article  CAS  Google Scholar 

  2. T. Matsuoka, J. I. Takabatake, Y. Inoue and H. Takahasi, Polym. Engng. Sci. 30 (1990) 957.

    Article  CAS  Google Scholar 

  3. M. G. Wyzgoski and G. E. Novak, Polym. Preprints, Amer. Chem.Soc. 29 (1988) 132.

    CAS  Google Scholar 

  4. D. McNally, Polym. Plast. Technol. Engng. 8 (1977)101.

    Article  CAS  Google Scholar 

  5. M. Akay and D. F. O'Regan, Plast. Rubber Comp. Proc. Appl. 24 (1995)97.

    CAS  Google Scholar 

  6. J. J. Horst and J. L. Spoormaker, Polym. Engng. Sci. 36 (1996) pp.2718-26.

    Article  CAS  Google Scholar 

  7. J. J. Horst, in “Proceedings of the Third International Conference on Deformation andFracture of Composites,” Surrey, March 1995 (Institute of Metals, London, 1995) p. 473.

    Google Scholar 

  8. J. J. Horst, in “Proceedings of the Tenth Biennial European Conference on Fracture, Berlin, September 1994, edited by K.-H. Schwalbe and C. Berger (Engineering Materials Advisory Services Ltd, Warley, 1994) p. 1187.

    Google Scholar 

  9. J. J. Horst, in “Proceedings of the 11th Biennial European Conference on Fracture”, ed.J. Petit, EMAS, Warley, UK, Poitiers, September 1996 (1996) 1057-62.

    Google Scholar 

  10. B. D. Agarwaland L. J. Broutman, in “Analysis and performance of fibre composites” (Wiley, New York, 1990).

    Google Scholar 

  11. M. J. Folkes, in “Short fibre reinforced thermoplastics” (Research Studies Press, Wiley, NewYork, 1982).

    Google Scholar 

  12. K. L. Jerina, J. C. Halpin and L. Nicolais, Ing. Chim. Ital. 9(1973) 94.

    CAS  Google Scholar 

  13. M. R. Piggott, in “Load bearing Fibre composites” (Pergamon, Oxford,1980).

    Google Scholar 

  14. N. Sato, S. Sato and T. Kurauchi, in “Proceedings of the FourthInternational Conference on Composite Materials, Tokyo, October 1982 (Japan Society for Composite Materials, Tokyo, 1982) 1061-66.

    Google Scholar 

  15. R. W. Lang, J. A. Manson and R. W. Hertzberg, J. Mater. Sci. 22 (1987) 4015.

    Article  CAS  Google Scholar 

  16. J. C. Malzahn and K. Friedrich, J. Mater. Sci. Lett. 3 (1984) 861.

    Article  CAS  Google Scholar 

  17. R. W. Hertzberg and J. A. Manson, in “Fatigue of engineering plastics” (Academic Press, New York, 1980).

    Google Scholar 

  18. J. W. Dally and D. H. Carrillo, Polym. Engng. Sci. 9 (1969) 433.

    Article  Google Scholar 

  19. J. F. Mandell, F. J. McGarry and C. G. Li, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Research Report R83–1 (1983).

    Google Scholar 

  20. A. T. Dibenedetto and G. Salee, Polym. Engng. Sci. 19 (1979) 512.

    Article  CAS  Google Scholar 

  21. N. Sato, T. Kurauchi, S. Sato and O. Kamigaito, J. Mater. Sci. 26 (1991) 3891.

    Article  CAS  Google Scholar 

  22. J. Karger-kocsis and K. Friedrich, Composites 19 (1988) 105.

    Article  CAS  Google Scholar 

  23. V. M. Karbhari and A. Dolgopolsky, Int. J. Fatigue 12 (1990) 51.

    Article  CAS  Google Scholar 

  24. J. Karger-kocsis, Composites 21 (1990) 243.

    Article  CAS  Google Scholar 

  25. J. Karger-kocsisand K. Friedrich, ibid. 19 (1988) 105.

    Article  Google Scholar 

  26. H. Voss and J. Karger-kocsis, Int. J. Fatigue 10 (1988) 3.

    Article  CAS  Google Scholar 

  27. J. F. Mandell, D. D. Huang, F. J. McGarry, in “Preprints of the 35th Annual Conference of the Reinforced Plastics/Composites Institute”, New Orleans, LA, 1980 (1980) Preprint 20-D.

  28. R. W. Lang, J. A. Manson and R. W. Hertzberg, Org. Coatings Plast. Chem. 45 (1981) 778.

    Google Scholar 

  29. E.A. A. van Hartingsveldt, PhD thesis, Delft (1987).

  30. A. Ten Busschen and A. P.S. Selvadurai, J. Appl. Mech. 62 (1995) 87.

    Google Scholar 

  31. A. P. S. Selvadurai and A. Ten Busschen, ibid. 62 (1995) 98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horst, J.J., Spoormaker, J.L. Fatigue fracture mechanisms and fractography of short-glassfibre-reinforced polyamide 6. Journal of Materials Science 32, 3641–3651 (1997). https://doi.org/10.1023/A:1018634530869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018634530869

Keywords

Navigation