Skip to main content
Log in

“Magic Relation” Between the Structures of Coexisting Phases at a First-Order Phase Transition in a Hard Sphere System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the statistical geometry of a hard sphere system of any number of dimensions, V o and S o, the so-called available space and the area of the interface between the available and unavailable space, respectively, can be used as surrogates for chemical potential and pressure. It is shown exactly that, if a first-order transition occurs, the relation dV o/dS o=−σ/2D, where σ is the diameter of a sphere and D is the dimensionality of the system, must hold for densities in the phase coexistence region. This relation is remarkable in that −σ/2D is the ratio of the volume to the surface area of a sphere. Also, it is shown that it is possible for the system to have two successive first-order transitions, but that the occurrence of a continuous transition (even in two dimensions) is unlikely. It is argued that this unlikelihood is substantially strengthened by the absence of temperature (except as a trivial factor) as a variable in hard-sphere systems. This suggests that the findings of the KTHNY theory, recent simulations, and colloid experiments (specialized to “sticky” hard disks) can be extended to true hard disks. The fundamental physics underlying the “magic relation” is yet to be exposed. The author continues to search for the underlying reason and hopes that the present paper will stimulate others to join the search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. It is a pleasure to contribute this paper to the “Festschrift” for Professor George R. Stell whose contributions to fluid theory have been so immense and from whom the author has learned so much.

  2. H. Reiss, J. Phys. Chem. 96:4736 (1992).

    Google Scholar 

  3. B. Widom, J. Chem. Phys. 39:2808 (1963).

    Google Scholar 

  4. B. Widom, J. Phys. Chem. 86:869 (1982).

    Google Scholar 

  5. D. S. Corti, Molec. Phys. 93:417 (1998).

    Google Scholar 

  6. H. Reiss, in Statistical Mechanics and Statistical Methods in Theory and Application, U. Landman, ed. (Plenum, New York, 1977).

    Google Scholar 

  7. R. J. Speedy, J. C. S. Faraday II 73:714 (1977); 75:1643 (1979).

    Google Scholar 

  8. R. J. Speedy, J. C. S. Faraday II 76:693 (1980).

    Google Scholar 

  9. R. J. Speedy, J. Phys. Chem. 92:2016 (1988).

    Google Scholar 

  10. H. Reiss and A. D. Hammerich, J. Phys. Chem. 90:6252 (1986).

    Google Scholar 

  11. H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31:369 (1959).

    Google Scholar 

  12. H. Reiss and P. Schaaf, J. Chem. Phys. 91:1875 (1989).

    Google Scholar 

  13. H. Reiss and P. Schaaf, J. Chem. Phys. 92:1258 (1990).

    Google Scholar 

  14. R. J. Speedy and H. Reiss, Molec. Phys. 72:999 (1991).

    Google Scholar 

  15. R. J. Speedy and H. Reiss, Molec. Phys. 72:1015 (1991).

    Google Scholar 

  16. H. Reiss, H. M. Ellerby, and J. A. Manzanares, J. Phys. Chem. 100:5970 (1996).

    Google Scholar 

  17. G. Soto-Campos, R. K. Bowles, A. Itkin, and H. Reiss, J. Stat. Phys. 96:111 (1999).

    Google Scholar 

  18. B. J. Alder and T. E. Wainwright, Phys. Rev. 127:359 (1962).

    Google Scholar 

  19. Private communication from F. H. Stillinger.

  20. D. S. Corti and R. K. Bowles, Molec. Phys. 96:1623 (1999).

    Google Scholar 

  21. R. K. Bowles and D. S. Corti, Molec. Phys. 98:429 (2000).

    Google Scholar 

  22. K. Bagchi, H. C. Andersen, and W. Swope, Phys. Rev. Lett. 76:255 (1996).

    Google Scholar 

  23. J. M. Kosterlitz and D. G. Thouless, J. Phys. C. 5:L124, (1972); 6:1181 (1973).

    Google Scholar 

  24. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41:121 (1978).

    Google Scholar 

  25. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19:2457 (1979).

    Google Scholar 

  26. A. P. Young, Phys. Rev. B 19:1855 (1979).

    Google Scholar 

  27. S. T. Chui, Phys. Rev. B 28:178 (1973).

    Google Scholar 

  28. P. Bladon and D. Frenkel, Phys. Rev. Lett. 74:2519 (1995).

    Google Scholar 

  29. H. Weber, D. Marx, and K. Binder, Phys. Rev. B 51:14636 (1995).

    Google Scholar 

  30. K. J. Strandberg, Rev. Mod. Phys. 60:161 (1988).

    Google Scholar 

  31. A. H. Marcus and S. A. Rice, Phys. Rev. E 55:637 (1997).

    Google Scholar 

  32. T. L. Hill, Statistical Mechanics, p. 249 (Dover, New York, 1987).

    Google Scholar 

  33. Private communication from Professor Jerome Percus.

  34. The author is indebted to Professor Stuart Rice for providing him with a preprint of this as yet unpublished work.

  35. S. Sastry, T. M. Truskett, P. G. Debenedetti, S. Torquato, and F. H. Stillinger, Molec. Phys. 95:289 (1998).

    Google Scholar 

  36. P. G. Debenedetti and T. M. Truskett, Fluid Phase Equil. 160:549 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiss, H. “Magic Relation” Between the Structures of Coexisting Phases at a First-Order Phase Transition in a Hard Sphere System. Journal of Statistical Physics 100, 73–87 (2000). https://doi.org/10.1023/A:1018627325705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018627325705

Navigation