Skip to main content
Log in

Behaviour of 316 Ti stainless steel in deuterium oxide with chloride

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Since tritiated water contains deuterium oxide, we require a better understanding of stainless steel corrosion in tritiated water and thus we have compared the behaviour of 316 Ti stainless steel in 2H2O and H2O with and without chloride. This was done by anodic polarization curves, cyclic voltammetry and electrochemical impedance spectroscopy. The corrosion potential of 316 Ti stainless steel in deuterium oxide changes and is related to pH modification due to the dissociation constant of this aqueous medium which shows the importance of pH in passivity. Without chloride, the insulating properties of the passive oxide layer depending on the pH and passive potentials are enhanced with 2H2O. With deuterium oxide containing chloride at near neutral pH, the repassive potential is lower than that obtained with H2O, consequently localized corrosion in grain boundaries and pit propagation, which lead to crevice corrosion, are greater. The critical pitting potential is in transpassivity indicating that pitting is less likely to occur. Comparison with and without Cl- for the passive potentials near the corrosion potential, shows that although chloride reduces the insulation provided by the passive oxide layer it is still greater than that obtained with H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. BELLANGER and J. J. RAMEAU, Corros. Sci. 36 (1994) 545.

    Article  CAS  Google Scholar 

  2. G. BELLANGER, J. Nucl. Mater. 210 (1994) 63.

    Article  CAS  Google Scholar 

  3. Idem, J. Mater. Sci. 30 (1995) 1259.

    Article  CAS  Google Scholar 

  4. Idem, J. Nucl. Mater. 217 (1993) 187.

    Article  Google Scholar 

  5. G. BELLANGER and J. J. RAMEAU, J. ibid. 226 (1995) 104.

    Article  CAS  Google Scholar 

  6. Idem., Electrochim. Acta 15 (1995) 2519.

    Article  Google Scholar 

  7. A. ROUSTILA, N. KUROMOTO, A. M. BRASS and J. CHÊNE, J. Nucl. Mater. 211 (1994) 156.

    Article  CAS  Google Scholar 

  8. A. M. BRASS, J. CHÊNE and J. GONZALEZ, Metall.Mat. Trans. 25A (1994) 1159.

    CAS  Google Scholar 

  9. G. BELLANGER and J. J. RAMEAU, Fusion Technol., J. Am. Nucl. Soc. 24 (1993) 145.

    CAS  Google Scholar 

  10. G. BELLANGER, Ibid 27 (1995) 46.

    CAS  Google Scholar 

  11. E. BEDNARKIEWICZ and Z. KUBLIK, Electrochim. Acta 24 (1979) 121.

    Article  CAS  Google Scholar 

  12. A. BRUGGEMAN, M. SNYKERS and P. DE REGGE, Fusion Technol. J. Amer. Nucl. Soc. 14 (1988) 828.

    CAS  Google Scholar 

  13. W. G. BURNS and P. B. MOORE, Radiation Effects 30 (1976) 233.

    CAS  Google Scholar 

  14. J. K. LINACRE and W. R. MARSH, report R 10027, Chemistry Division, Atomic Energy Research Establishment, Harwell (1981).

  15. J. WRIGHT, J. K. LINACRE, W. R. MARSH and T. H. BATES, in Proc. Int. Conf. on the Peaceful Uses of Atomic Energy, Vol. 7, Geneva, 1955 (United Nations, New York, 1956) p. 560.

    Google Scholar 

  16. J. P. DIARD, P. LANDAUD, B. LE GORREC and C. MONTELLA, in Proceedings Deuxième Forum sur les Impédances Electrochemiques, Montrouge, France, 1987 (University P. & M. Curie, Paris, 1987).

    Google Scholar 

  17. J. P. DIARD, B. LE GORREC, S. MAXIMOVITCH, Electrochim. Acta 35 (1990) 1099.

    Article  CAS  Google Scholar 

  18. V. A. MACAGNO and J. W. SCHULTZE, J. Electroanal. Chem. 180 (1984) 157.

    Article  CAS  Google Scholar 

  19. J. W. SCHULTZE and V. A. MACAGNO, Electrochim. Acta 31 (1986) 355.

    Article  CAS  Google Scholar 

  20. L. YOUNG, “Anodic oxide films”, (Academic Press, London, 1961).

    Google Scholar 

  21. O. KERREC, D. DEVILLIERS, C. HINNEN and P. MARCUS, in Symp. Modifications of Passive Films (European Federation of Corrosion, London, 1994) p. 206.

    Google Scholar 

  22. O. KERREC, PhD thesis, Paris, (1992).

  23. W. WILHELMSEN, Electrochim. Acta 33 (1988) 63.

    Article  CAS  Google Scholar 

  24. G. BELLANGER and J. J. RAMEAU, J. Nucl. Mater 31 (1996) 2097.

    CAS  Google Scholar 

  25. S. ZECEVIC, D. M. DRAZIC and S. GOJKOVIC, Electrochim. Acta 36 (1991) 5.

    Article  CAS  Google Scholar 

  26. P. E. MORRIS and R. C. SCARBERRY, Corrosion 26 (1970) 169.

    CAS  Google Scholar 

  27. J. VAN MUYLDER, in “Comprehensive treatise of electrochemistry”, Vol. 4, edited by J. O’M. Bockris, B. E. Conway, E. Yeager and R. E. White (Plenum Press, New York, 1981) pp. 196.

    Google Scholar 

  28. CHONG-CHENG HUANG, WEN-TA TSAI and JU-TUNG LEE, Mater. Sci. Engng. A190 (1995) 199.

    Article  CAS  Google Scholar 

  29. J. M. ALBELLA, I. M. MONTERO and J. I. MARTINZDUART, Thin Solid Film 125 (1985) 57.

    Article  CAS  Google Scholar 

  30. M. W. BREITER, Electrochim. Acta 15 (1970) 1145.

    Google Scholar 

  31. O. KERREC, D. DEVILLIERS, H. GROULT and M. CHELMA, ibid 40 (1995) 719.

    Article  CAS  Google Scholar 

  32. P. SCHMUKI and H. BÖHNI, ibid 40 (1995) 775.

    Article  CAS  Google Scholar 

  33. E. B. CASTRO and J. R. VILCHE, ibid 38 (1993) 1567.

    Article  CAS  Google Scholar 

  34. A. M. P. SIMOES, M. G. S. FERREIRA, B. RONDOT and M. DA CUNHA BELO, J. Electrochem. Soc. 137 (1990) 1.

    Article  Google Scholar 

  35. RAK-HYUN, SU-IL PYUN and R. A. ORIANI, J. Appl. Electrochem. 21 (1991) 181.

    Article  Google Scholar 

  36. J. R. MACDONALD, “Impedance spectroscopy”, (Wiley, New York, 1987).

    Google Scholar 

  37. K. JÜTTNER, Electrochim. Acta 35 (1990) 1501.

    Article  Google Scholar 

  38. T. PAJKOSSY and L. NYIKOS, Acta Chim. Hung. 117 (1984) 417.

    CAS  Google Scholar 

  39. C. Y. CHAO, L. F. LIN and D.D. MACDONALD, J. Electrochem. Soc. 128 (1981) 1187.

    Article  CAS  Google Scholar 

  40. J. B. BESSONE, D. R. SALINAS, C. E. MAYER, M. EBERT and W. J. LORENZ, Electrochim. Acta 37 (1992) 2283.

    Article  CAS  Google Scholar 

  41. H. H. STREHBLOW, in “Corrosion mechanisms in theory and practice”, edited by P. Marcus and J. Oudar (Dekker, New York, 1995) p. 201.

    Google Scholar 

  42. C. Y. CHAO, L. F. LIN and D. D. MACDONALD, J. Electrochem. Soc. 128 (1981) 1194.

    Article  Google Scholar 

  43. A. J. BARD and L. R. FAULKER, “Electrochemical methods. Fundamentals and applications”, (Wiley, New York, 1980).

    Google Scholar 

  44. R. A. HUGGINS, I. D. RAISTRICK and C. K. HO, J. Electrochem. Soc. 127 (1980) 343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BELLANGER, G., RAMEAU, J.J. Behaviour of 316 Ti stainless steel in deuterium oxide with chloride. Journal of Materials Science 32, 4355–4376 (1997). https://doi.org/10.1023/A:1018623923967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018623923967

Keywords

Navigation