Skip to main content
Log in

Interfacial reaction and adhesion between SiC and thin sputtered nickel films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thin sputtered nickel films grown on SiC were annealed in an Ar/4 vol % H2 atmosphere at temperatures between 550 to 1450 °C for various times. The reactivity and the reaction-product morphology were characterized using optical microscopy, surface profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalysis. The reaction with the formation of silicides and carbon was observed to first occur above 650 °C. Above 750 °C, as the reaction proceeded, the initially formed Ni3Si2 layer was converted to Ni2Si and carbon precipitates were observed within this zone. The thin nickel film reacted completely with SiC after annealing at 950 °C for 2 h. The thermodynamically stable Ni2Si is the only observed silicide in the reaction zone up to 1050 °C. Above 1250 °C, carbon precipitated preferentially on the outer surface of the reaction zone and crystallized as graphite. The relative adhesive strength of the reaction layers was qualitatively compared using the scratch test method. At temperatures between 850 to 1050 °C the relatively higher critical load values of 20–33 N for SiC/Ni couples are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. K. D. MÖRGENTHAR, Tech. Keram. 2, edited by J. Kriegermann (Deutsche Keramische Gesellschaft, Köln, 1990) 29.

    Google Scholar 

  2. L. M. SHEPPARD, Ceram. Bull. 68 (1989) 1624.

    Google Scholar 

  3. D. L. MCDALENS, T. T. SERAFINI and J. A. DICARLO, J. Mater. Energy System 8 (1986) 80.

    Article  Google Scholar 

  4. G. L. HARRIS, M. G. SPENCER and C. Y.-W. YANG, “Amorphous and crystalline silicon carbide III” (Springer-Verlag, Berlin 1992).

    Book  Google Scholar 

  5. R. J. TREW, J. B. YAN and P. M. MOCK, Proc. IEEE 79 (1991) 598.

    Article  CAS  Google Scholar 

  6. R. F. DAVIS, G. KELNER, M. SHUR, W. PALMOUR and J. A. EDMOND, ibid. 80 (1991) 667.

    Google Scholar 

  7. M. G. NICHOLAS, Mater. Sci. Res. 21 (1986) 349.

    Google Scholar 

  8. D. J. LARKIN, L. V. INTERRANTE and A. BOSE, J. Mater. Res. 5 (1990) 2706.

    Article  CAS  Google Scholar 

  9. R. E. LOEHMAN, Ceram. Bull. 68 (1989) 891.

    CAS  Google Scholar 

  10. R. C. J. SCHIEPERS, F. J. J. VAN LOO and G. D. WITH, J. Amer. Ceram. Soc. 71 (1988) C–284.

    Article  Google Scholar 

  11. M. BACKHAUS-RICOULT, Ber. Bunsenges. Phys. Chem. 93 (1989) 1277.

    Article  CAS  Google Scholar 

  12. T. C. CHOU, A. JOSHI and J. WADSWORTH, J. Mater. Res. 6 (1991) 796.

    Article  CAS  Google Scholar 

  13. P. NIKOLOPOULOS, S. AGATHOPOULOS, G. N. ANGELOPOULOS, A. NAOUMIDIS and H. GRÜBMEIER, J. Mat. Sci. 27 (1992) 139.

    Article  CAS  Google Scholar 

  14. E. GYARMATI, W. KESTERNICH and R. FÖRTHMANN, cfi/Ber. DKG 66 (1989) 292.

  15. D. L. YANEY and A. JOSHI, J. Mater. Res. 5 (1990) 2197.

    Article  CAS  Google Scholar 

  16. T. C. CHOU and T. G. NIEH, ibid. 5 (1990) 1985.

    Article  CAS  Google Scholar 

  17. V. M. BERMUDES and R. KAPLAN, ibid. 5 (1990) 2882.

    Article  Google Scholar 

  18. C. S. LIM, H. NICKEL, A. NAOUMIDIS and E. GYARMATI, J. Mater. Sci. 30 (1995) 3874.

    Article  CAS  Google Scholar 

  19. Idem, ibid. 31 (1995) 4241.

  20. D. FATHY, O. W. HOLLAND, J. NARAYAN and B. R. APPLETON, Nucl. Instr. Meth. Phys. Res. B7 (1985) 571.

    Article  Google Scholar 

  21. H. HÖCHST, W. NILES, G. W. ZAJAC, T. H. FLEISCH, B. C. JOHNSON and J. M. MEESE, J. Vac. Sci. Technol. B6 (1988) 1320.

    Article  Google Scholar 

  22. W. F. J. SLIJKERMAN, A. E. M. J. FISCHER, J. F. VAN DER VEEN, I. OHDOMARI, S. YOSHIDA and S. MISAWA, J. Appl. Phys. 66 (1989) 666.

    Article  CAS  Google Scholar 

  23. I. OHDOMARI, S. SHA, H. AOCHI, T. CHIKYOW and S. SUZUKI, ibid. 62 (1987) 3747.

    Article  Google Scholar 

  24. C. S. PAI, C. M. HANSON and S. S. LAU, ibid. 57 (1985) 618.

    Article  CAS  Google Scholar 

  25. J. NARAYAN, D. FATHY, O. W. HOLLAND, B. R. APPLETON and R. F. DAVIS, ibid. 56 (1984) 1557.

    Google Scholar 

  26. M. OHRING, “The materials science of thin films” (Academic Press, London, 1992) p. 113.

    Google Scholar 

  27. A. J. PERRY, Thin Solid Films 78 (1981) 77.

    Article  CAS  Google Scholar 

  28. O. KUBASCHEWSKI and C. B. ALCOCK, “Metallurgical thermochemistry”, 5th Edn. (Pergamon Press, Oxford, 1983) p. 280.

    Google Scholar 

  29. R. M. WALSER and R. W. BÉNE, Appl. Phys. Lett. 28 (1976) 624.

    Article  CAS  Google Scholar 

  30. C. D. LIEN, M. A. NICLOET and S. S. LAU, Thin Solid Films 143 (1986) 63.

    Article  CAS  Google Scholar 

  31. K. N. TU, W. K. CHU and J. W. MAYER, ibid. 25 (1975) 403.

    Article  CAS  Google Scholar 

  32. F. D'HEURLE, C. S. PETERSON, J. E. E. BAGLIN, S. J. LA PLACA and C. Y. WONG, J. Appl. Phys. 55 (1984) 4208.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, C.S., Nickel, H., Naoumidis, A. et al. Interfacial reaction and adhesion between SiC and thin sputtered nickel films. Journal of Materials Science 32, 6567–6572 (1997). https://doi.org/10.1023/A:1018623613741

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018623613741

Keywords