Journal of Materials Science

, Volume 32, Issue 22, pp 5993–5999 | Cite as

Preparation and characterization of a clay-polyvinylpyridinium matrix for the removal of bacterial cells from water

  • T Seckin
  • Y Onal
  • O Yesilada
  • A Gultek


Polyvinylpyridinium salts were immobilized onto a clay matrix and were then tested for their antibacterial properties. The clay-polyvinylpyridinium matrix was prepared by the copolymerization of γ-methacryloxypropyltriethoxy silane bonded covalently to clay and 4-vinylpyridine and subsequent quaternization with benzyl halides. Suspension tests for antibacterial properties of the immobilized bactericide against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa demonstrated the high activity of the pyridinium salts that are bonded to the polyacrylate spacer. Advantageously, these insoluble clay-polymer bactericides could be applied without any contamination by the substrate.


Bentonite Viable Cell Number Pyridinium Salt Clay Matrix Raction Pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. ARGUELLO, C. D. CHRISWELL, J. S. FRITZ and K. W. RICHARD, J. Amer. Water Work Assoc. 71 (1979) 504.CrossRefGoogle Scholar
  2. 2.
    A. D. UHLER and J. C. MEANS, Environmental Sci. Technol. 19 (1985) 340.CrossRefGoogle Scholar
  3. 3.
    J. M. SYMONS, T. A. BELLAR, K. CARSWELL, J. DEMARCO, K. L. KROPP, G. G. ROBECK, D. R. SEEGER and J. C. SLOCUM, J. Amer. Water Work Assoc. 67 (1975) 634.CrossRefGoogle Scholar
  4. 4.
    M. D. HOGAN, P. Y. CHI and T. J. MITCHEL, J. Environ. Pathol. Toxicol. 2 (1979) 873.Google Scholar
  5. 5.
    H. T. GLASSER and J. K. EDZALD, Environmental Sci. Technol. 13 (1979) 299.CrossRefGoogle Scholar
  6. 6.
    S. L. DANIELS, “Adsorption of microorganisms to surfaces”, (John Wiley, New York, 1980).Google Scholar
  7. 7.
    A. KANAZAWA, T. IKEDA and T. ENDO, J. Polym. Sci. Polym. Chem. 31 (1993) 3003.CrossRefGoogle Scholar
  8. 8.
    N. KAWABATA, T. HAYASHI and T. MATSUMOTO, Appl. Env. Microbiol. 46 (1983) 203.Google Scholar
  9. 9.
    N. KAWABATA and K. NAKAGAWA, J. Microbiol. Methods 9 (1986) 337.CrossRefGoogle Scholar
  10. 10.
    N. KAWABATA, Y. UENO, K. TORII and T. MATSUMOTO, Agric. Biol. Chem. 51 (1987) 1085.Google Scholar
  11. 11.
    D. KLEMN, P. SCHUMANN and M. HARTMANN, Acta Polym. 36 (1985) 446.CrossRefGoogle Scholar
  12. 12.
    T. IKEDA and S. TAZUKE, Makromol. Chem. 185 (1984) 869.CrossRefGoogle Scholar
  13. 13.
    M. SENUMA, M. IWAKURA, S. EBIHARA, Y. SHIMURA and K. KAREYIMA, Angew Makromol. Chem. 204 (1993) 119.CrossRefGoogle Scholar
  14. 14.
    K. HÜTTINGER, Chem. Ztg. 106 (1982) 415.Google Scholar
  15. 15.
    T. TASHIRO, J. App. Polym. Sci. 43 (1991) 1369.CrossRefGoogle Scholar
  16. 16.
    Idem, ibid. 46 (1992) 899.CrossRefGoogle Scholar
  17. 17.
    Idem, Angew Makromol. Chem. 206 (1993) 899.CrossRefGoogle Scholar
  18. 18.
    Idem, ibid. 207 (1993) 31.Google Scholar
  19. 19.
    S. AUGUSTA, H. F. GRUBER and F. STREICHER, J. Appl. Polym. Sci. 53 (1994) 1149.CrossRefGoogle Scholar
  20. 20.
    N. KAWABATA, Progg. Polym. Sci. 17 (1992) 1.CrossRefGoogle Scholar
  21. 21.
    T. SEÇKIN, Y. ÖNAL, İI. AKSOY and E. YAKINCI, J. Mater. Sci. 31 (1996) 3123.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • T Seckin
    • 1
  • Y Onal
    • 2
  • O Yesilada
    • 3
  • A Gultek
  1. 1.Faculty of Arts and Sciences, Chemistry DeptInonu UniversityMalatyaTurkey
  2. 2.Faculty of Engineering, Chemistry DeptInonu UniversityMalatyaTurkey
  3. 3.Biology DeptInonu UniversityMalatyaTurkey

Personalised recommendations