Skip to main content
Log in

Dissipative Dynamics and the Statistics of Energy States of a Hookean Model for Protein Folding

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A generic model of a random polypeptide chain, with discrete torsional degrees of freedom and Hookean spring connecting pairs of hydrophobic residues, reproduces the energy probability distribution of real proteins over a very large range of energies. We show that this system with harmonic interactions, under dissipative dynamics driven by random noise, leads to a distribution of energy states obeying a modified one-dimensional Ornstein–Uhlenbeck process and giving rise to the so-called Wigner distribution. A tunably fine- or coarse-grained sampling of the energy landscape yields a family of distributions for the energies and energy spacings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. ben-Avraham, Phys. Rev. B 47:14559 (1993).

    Google Scholar 

  2. K. A. Dill, S. Bromberg, K. Yue, K. M. Feibig, D. P. Yee, P. D. Thomas, and H. S. Chan, Protein Science 4:561 (1995).

    Google Scholar 

  3. M. M. Tirion, Phys. Rev. Lett. 77:1905 (1996).

    Google Scholar 

  4. T. Haliloglu, I. Bahar, and B. Erman, Phys. Rev. Lett. 79:3090 (1997).

    Google Scholar 

  5. B. Erman and K. Dill, J. Chem. Phys. 112:1050 (2000).

    Google Scholar 

  6. B. Erman, Hydrophobic collapse of proteins into their near-native configurations, unpublished.

  7. E. Tüzel and A. Erzan, Phys. Rev. E 61:1040 (2000).

    Google Scholar 

  8. E. Wigner, Proc. Cambridge Phil. Soc. 47:790 (1951); Ann. Math. 62:548 (1955).

    Google Scholar 

  9. T. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. S. Wong, Rev. Mod. Phys. 53:385 (1981).

    Google Scholar 

  10. C. E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965).

    Google Scholar 

  11. C. E. Porter, J. Math. Phys. 4:1039 (1963).

    Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and its Applications, Vol. II (Wiley, New York, 1957), p. 332ff.

    Google Scholar 

  13. C. N. Chen, C. I. Chou, C. R. Hwang, J. Kang, T. K. Lee, and S. P. Li, Phys. Rev. E 60:2388 (1999).

    Google Scholar 

  14. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254:1598 (1991).

    Google Scholar 

  15. J. L. Green, J. Fan, and C. A. Angell, J. Phys. Chem. 98:13780 (1994).

    Google Scholar 

  16. B. Erman and I. Bahar, Macromol. Symp. 133:33 (1998).

    Google Scholar 

  17. J. Colmenero, A. Arbe, and A. Algera, Phys. Rev. Lett. 71:2603 (1993).

    Google Scholar 

  18. A. Yu. Grosberg, J. Stat. Phys. 38:149 (1985).

    Google Scholar 

  19. P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969).

    Google Scholar 

  20. T. Halpin Healy and Y. C. Zhang, Physics Reports 254:215-414 (1995).

    Google Scholar 

  21. J. Krug, P. Meakin, and T. Halpin-Healy, Phys. Rev. A 45:638 (1992).

    Google Scholar 

  22. A. Erzan, E. Veermans, R. Heijungs, and L. Pietronero, Phys. Rev. B 41:11522 (1990).

    Google Scholar 

  23. E. Veermans, A. Erzan, R. Heijungs, and L. Pietronero, Physica A 166:447 (1990).

    Google Scholar 

  24. G. Parisi and L. Pietronero, Physica A 179:16 (1991).

    Google Scholar 

  25. N. D. Socci and J. N. Onuchic, J. Chem. Phys. 103:4732 (1995).

    Google Scholar 

  26. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).

    Google Scholar 

  27. H. Mach, D. B. Volkin, C. J. Burke, and C. R. Middaugh, Ultraviolet absorption spec troscopy, B. A. Shirley, ed., Methods in Molecular Biology, Vol. 40: Protein Stability and Folding (Humana Press, Totowa, New Jersey, 1995), pp. 91-114.

    Google Scholar 

  28. We are indebted to Nazmi Postacíoğlu for this remark.

  29. M. L. Mehta, Random Matricies and the Statistical Theory of Energy Levels (Academic Press, New York, 1967).

    Google Scholar 

  30. M. V. Berry and M. Robnik. J. Phys. A 17:2413 (1984).

    Google Scholar 

  31. E. Yurtsever and J. Brickman, Phys. Rev. A 38:1027 (1988).

    Google Scholar 

  32. E. Yurtsever and J. Brickman, Phys. Rev. A 41:6688 (1990).

    Google Scholar 

  33. D. Wales, private communication.

  34. D. Bohigas, M. J. Giannoni, and C. Schmidt, Phys. Rev. Lett. 52:1 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tüzel, E., Erzan, A. Dissipative Dynamics and the Statistics of Energy States of a Hookean Model for Protein Folding. Journal of Statistical Physics 100, 405–422 (2000). https://doi.org/10.1023/A:1018616417953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018616417953

Navigation