Skip to main content
Log in

A Self-Consistent Ornstein–Zernike Approximation for the Edwards–Anderson Spin-Glass Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We propose a self-consistent Ornstein–Zernike approximation for studying the Edwards–Anderson spin glass model. By performing two Legendre transforms in replica space, we introduce a Gibbs free energy depending on both the magnetizations and the overlap order parameters. The correlation functions and the thermodynamics are then obtained from the solution of a set of coupled partial differential equations. The approximation becomes exact in the limit of infinite dimension and it provides a potential route for studying the stability of the high-temperature phase against replica-symmetry breaking fluctuations in finite dimensions. As a first step, we present the predictions for the freezing temperature T f and for the zero-field thermodynamic properties and correlation length above T f as a function of dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Hoye and G. Stell, J. Chem. Phys. 67:439 (1977); Mol. Phys. 52:1071 (1984); Int. J. Thermophys. 6:561 (1985).

    Google Scholar 

  2. D. Pini and G. Stell, Phys. Rev. Lett. 77:996 (1996).

    Google Scholar 

  3. D. Pini, G. Stell, and R. Dickman, Phys. Rev. E 57:2862 (1998).

    Google Scholar 

  4. J. Hoye, D. Pini, and G. Stell, Physica A 279:213 (2000).

    Google Scholar 

  5. E. Kierlik, M. L. Rosinberg, and G. Tarjus, J. Stat. Phys. 89:215 (1997).

    Google Scholar 

  6. E. Kierlik, M. L. Rosinberg, and G. Tarjus, J. Stat. Phys. 94:805 (1999).

    Google Scholar 

  7. S. F. Edwards and P. W. Anderson, J. Phys. F: Metal. Phys. 5:965 (1975).

    Google Scholar 

  8. G. Parisi, Phys. Rev. Lett. 43:1754 (1979); J. Phys. A: Math. Gen. 13:L115 (1980); 13:1101 (1980); 13:1887 (1980).

    Google Scholar 

  9. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35:1792 (1975).

    Google Scholar 

  10. For reviews see K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986); K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  11. E. Marinari, G. Parisi, and J. Ruiz-Lorenzo, in Spin Glasses and Random Fields, A. P. Young, ed. (World Scientific, Singapore, 1998).

    Google Scholar 

  12. C. De Dominicis, I. Kondor, and T. Temesvari, in Spin Glasses and Random Fields, A. P. Young, ed. (World Scientific, Singapore, 1998).

    Google Scholar 

  13. W. L. McMillan, J. Phys. C 17:3179 (1984).

    Google Scholar 

  14. A. J. Bray and M. A. Moore, J. Phys. C 18:L699 (1985).

    Google Scholar 

  15. D. S. Fisher and D. A. Huse, Phys. Rev. B 38:386 (1988).

    Google Scholar 

  16. J. R. L. de Almeida and D. J. Thouless, J. Phys. A: Math. Gen. 11:983 (1978).

    Google Scholar 

  17. L. W. Bernardi, S. Prakash, and I. A. Campbell, Phys. Rev. Lett. 77:2798 (1996).

    Google Scholar 

  18. R. F. Soares, F. D. Nobre, and J. R. L. de Almeida, Phys. Rev. B 50:6151 (1994).

    Google Scholar 

  19. A. J. Bray and M. A. Moore, J. Phys. C 12:79 (1979).

    Google Scholar 

  20. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, New York, 1976).

    Google Scholar 

  21. H. C. Andersen and D. Chandler, J. Chem. Phys. 57:1918 (1972).

    Google Scholar 

  22. G. Stell, Phys. Rev. 184:135 (1969).

    Google Scholar 

  23. G. S. Joyce, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), Vol. 2, p. 375.

    Google Scholar 

  24. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettterling, Numerical Recipes (Cambridge, 1992).

  25. R. R. P. Singh and M. E. Fisher, J. Appl. Phys. 63:3994 (1988).

    Google Scholar 

  26. G. Parisi, F. Ricci-Tersenghi, and J. Ruiz-Lorenzo, J. Phys. A: Math. Gen. 29:7943 (1996).

    Google Scholar 

  27. E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. Ruiz-Lorenzo, and F. Zuliani, J. Stat. Phys. 98:973 (2000).

    Google Scholar 

  28. M. Serva and G. Paladin, Phys. Rev. E 54:4637 (1996).

    Google Scholar 

  29. M. L. Rosinberg and G. Tarjus, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kierlik, E., Rosinberg, M.L. & Tarjus, G. A Self-Consistent Ornstein–Zernike Approximation for the Edwards–Anderson Spin-Glass Model. Journal of Statistical Physics 100, 423–443 (2000). https://doi.org/10.1023/A:1018612317044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018612317044

Navigation