Skip to main content
Log in

Recognition of glycoconjugates by Helicobacter pylori. Comparison of two sialic acid-dependent specificities based on haemagglutination and binding to human erythrocyte glycoconjugates

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Helicobacter pylori expresses separate binding characteristics depending on growth conditions, as documented by binding to human erythrocyte glycoconjugates. Cells grown in Ham's F12 liquid medium exhibited a selective sialic acid-dependent binding to polyglycosylceramides, PGCs (Miller-Podraza et al. (1996) Glycoconjugate J 13:453–60). There was no binding to traditional sialylated glycoconjugates like shorter-chain gangliosides, glycophorin or fetuin. However, cells grown on Brucella agar bound both to PGCs and other sialylated glycoconjugates. Fetuin was an effective inhibitor of haemagglutination caused by agar-grown cells, but had no or a very weak inhibitory effect on haemagglutination by F12-grown bacteria. PGCs were strong inhibitors in both cases, while asialofetuin was completely ineffective. The results indicate that H. pylori is able to express two separate sialic acid-dependent specificities, one represented by binding to fetuin, as described before, and another represented by a selective binding to PGCs. Abbreviations: PGCs, polyglycosylceramides; TLC, thin-layer chromatography; SDS PAGE, sodium dodecylsulfate polyacrylamide gel electrophoresis; BSA, bovine serum albumin; C, chloroform; M, methanol. The carbohydrate and glycosphingolipid nomenclatures are according to recommendations of IUPAC-IUB Commission on Biochemical Nomenclature (Lipids (1977) 12:455–68; J Biol Chem (1982) 257:3347–51 and J Biol Chem (1987) 262:13–18).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dooley CP (1993) Curr Opin Gastroenterol 9: 112-17.

    Google Scholar 

  2. DeCross AJ, Marshall BJ (1993) Am J Med Sci 306: 381-92.

    Article  PubMed  CAS  Google Scholar 

  3. Wadström T (1995) Curr Opin Gastroenterol 11: 69-75.

    Article  Google Scholar 

  4. Slomiany BL, Piotrowski A, Samanta A, VanHorn K, Murty VLN, Slomiany A (1989) Biochem Int 19: 929-36.

    PubMed  CAS  Google Scholar 

  5. Saitoh T, Natomi H, Zhao W, Okuzumi K, Sugano K, Iwamori M, Nagai Y (1991) FEBS ¸ett 282: 385-87.

    Article  CAS  Google Scholar 

  6. Lingwood CA, Huesca M, Kuksis A (1992) Infect Immun 60: 2470-74.

    PubMed  CAS  Google Scholar 

  7. Borén T, Falk P, Roth KA, Larson G, Normark S (1993) Science 262: 1892-95.

    Article  PubMed  Google Scholar 

  8. Evans DG, Evans DJ Jr (1995) Methods Enzymol 253: 336-60.

    PubMed  CAS  Google Scholar 

  9. Kamisago S, Iwamori M, Tai T, Mitamura K, Yazaki Y, Sugano K (1996) Infect Immun 64: 624-28.

    PubMed  CAS  Google Scholar 

  10. Robinson J, Goodwin CS, Cooper M, Burke V, Mee BJ (1990) J Med Microbiol 33: 277-84.

    PubMed  CAS  Google Scholar 

  11. Armstrong JA, Cooper M, Goodwin CS, Robinson J, Wee SH, Burton M, Burke V (1991) J Med Microbiol 34: 181-87.

    Article  PubMed  Google Scholar 

  12. Huang J, Keeling PWN, Smyth CJ (1992) J Gen Microbiol 138: 1503-13.

    PubMed  CAS  Google Scholar 

  13. Lelwala-Guruge J, Ljungh As, Wadström T (1992) APMIS 100: 908-13.

    Article  PubMed  CAS  Google Scholar 

  14. Evans DG, Evans DJ Jr, Moulds JJ, Graham DY (1988) Infect Immun 56: 2896-906.

    PubMed  CAS  Google Scholar 

  15. Evans DG, Karjalainen TK, Evans DJ Jr, Graham DY, Lee C-H (1993) J Bacteriol 175: 674-83.

    PubMed  CAS  Google Scholar 

  16. O'Toole PW, Janzon, L, Doig P. Huang J, Kostrzynska M, Trust TJ (1995) J Bacteriol 177: 6049-57.

    PubMed  Google Scholar 

  17. Miller-Podraza H, Abul Milh M, Bergström J, Karlsson K-A (1996) Glycoconjugate J 13: 453-60.

    Article  CAS  Google Scholar 

  18. Miller-Podraza H, Andersson C, Karlsson, K-A (1993) Biochim Biophys Acta 1168: 330-39.

    PubMed  CAS  Google Scholar 

  19. Karlsson K-A (1987) Methods Enzymol 138: 212-20.

    Article  PubMed  CAS  Google Scholar 

  20. Folch J, Lees M, Stanley GHS (1957) J Biol Chem 226: 497-509.

    PubMed  CAS  Google Scholar 

  21. Wells MA, Dittmer JC (1963) Biochemistry 2: 1259-63.

    Article  PubMed  CAS  Google Scholar 

  22. Pan YT, Elbein AD (1990) Prog Drug Res 34: 163-207.

    PubMed  CAS  Google Scholar 

  23. Thomas DB, Winzler, RJ (1969) J Biol Chem 244: 5943-46.

    PubMed  CAS  Google Scholar 

  24. Yoshima H, Furthmayr H, Kobata A (1980) J Biol Chem 255: 9713-18.

    PubMed  CAS  Google Scholar 

  25. Zdebska E, Krauze R. Koscielak J (1983) Carbohydrate Res 120: 113-30.

    Article  CAS  Google Scholar 

  26. Wiegandt H (1974) Eur J Biochem 453: 367-69.

    Article  Google Scholar 

  27. Nilsson B, Nordén NE, Svensson S (1979) J Biol Chem 254: 4545-53.

    PubMed  CAS  Google Scholar 

  28. Spiro RG (1960) J Biol Chem 235: 2860-69.

    PubMed  CAS  Google Scholar 

  29. Huesca M, Borgia S, Hoffman P, Lingwood CA (1996) Infect Immun 64: 2643-48.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller-Podraza, H., Bergstrom, J., Abul Milh, M. et al. Recognition of glycoconjugates by Helicobacter pylori. Comparison of two sialic acid-dependent specificities based on haemagglutination and binding to human erythrocyte glycoconjugates. Glycoconj J 14, 467–471 (1997). https://doi.org/10.1023/A:1018599401772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018599401772

Navigation