Skip to main content
Log in

Fracture toughness evaluation of ductile polymeric films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The energy for complete fracture in double edge-notched tension test specimens has been measured for a wide range of polymer films. Results indicated that the variation of the total specific work of fracture, wT, with ligament length, L, can be described by two straight lines, both of the form wT = we + β wpL, thus giving upper and lower intercept values at zero ligament length (i.e. we) for each film. The first term, we, is the energy absorbed per unit area of fracture, whereas the second term, wp, is the energy absorbed per unit volume of plastic deformation remote from the fracture surface. The lower we value was obtained from the extrapolation of the data within the mixed mode region (plane-stress/plane-strain) where the maximum net-section stress exceeded 1.15 times that of the tensile yield stress, σy, of the material, and the upper value was ascertained by extrapolating the data within the plane stress region where the net-section stress was 1.15 σy. It appears that the transition from plane stress to plane strain mode of fracture in thin films occurs at a ligament length much greater than 5B, where B is the specimen thickness. Moreover, it was found that the linearity of the data within the plane-stress region was not affected when ligament length values exceeded the plastic zone size. Moreover, variation of the extension to break with ligament length, for both pure plane stress and the mixed mode regions, was also linear; and the extrapolation values at zero ligament length were identified as crack opening displacements. Essential work estimated from the crack opening displacement agreed reasonably well with the extrapolated values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. BROWN and J. SRAWLEY, ASTM STP 410 (American Society for Testing and Materials, Philadelphia, PA, 1966).

  2. J. D. LANDES and J. A. BEGLEY, ASTM STP 560 (American Society for Testing and Materials, Philadelphia, PA, 1974) p. 170.

  3. S. HASHEMI and J. G. WILLIAMS, J. Mater. Sci. 19 (1984) 3746.

    Article  CAS  Google Scholar 

  4. Idem,Polymer 27 (1986) 382.

    Article  Google Scholar 

  5. Idem,J. Polym. Eng. Sci. 26 (1986) 760.

    Article  CAS  Google Scholar 

  6. P. L. FERNANDO and J. G. WILLIAMS,ibid. 20 (1980) 215.

    Article  CAS  Google Scholar 

  7. S. HASHEMI and Z. YUAN,J. Plast. Rubb. Compos. Process. Applic. 21 (1994) 151.

    CAS  Google Scholar 

  8. S. HASHEMI,ibid.20 (1993) 229.

    CAS  Google Scholar 

  9. S. HASHEMI and D. O’BRIEN,J. Mater. Sci. 28 (1993) 3977.

    Article  CAS  Google Scholar 

  10. W. F. CHAN and J. G. WILLIAMS,Polymer 35 (1994) 1666.

    Article  CAS  Google Scholar 

  11. K. B. BROBERG,Int. J. Fract. 4 (1968) 11.

    Article  Google Scholar 

  12. B. COTTERELL and J. K. REDDEL,ibid. 13 (1977) 267.

    CAS  Google Scholar 

  13. Y. W. MAI and B. COTTERELL,J. Mater. Sci. 15 (1980) 2296.

    Article  CAS  Google Scholar 

  14. Idem,Eng. Fract. Mech. 21 (1985) 123.

    Article  Google Scholar 

  15. M. P. WUNK and D. T. REED,Int. J. Fract. 31 (1986) 161.

    Article  Google Scholar 

  16. C. A. PATON and S. HASHEMI,J. Mater. Sci. 27 (1992) 2279.

    Article  CAS  Google Scholar 

  17. A. S. SALEEMI and J. A. NARIN,J. Polym. Eng. Sci. 30 (1990) 211.

    Article  CAS  Google Scholar 

  18. Y. W. MAI and P. POWELL,J. Polym. Sci. Polym. Phys. Edn 29 (1991) 785.

    Article  CAS  Google Scholar 

  19. Y. W. MAI and B. COTTERELL,Int. J. Fract. 32 (1986) 2296.

    Article  Google Scholar 

  20. S. HASHEMI, to be published.

  21. H. HILL,J. Mech. Phys. Solids 4 (1952) 19.

    Article  Google Scholar 

  22. A. A. WELLS,Br. Weld. J. 10 (1963) 563.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HASHEMI, S. Fracture toughness evaluation of ductile polymeric films. Journal of Materials Science 32, 1563–1573 (1997). https://doi.org/10.1023/A:1018582707419

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018582707419

Keywords

Navigation