Skip to main content
Log in

Presynaptic terminals in hyaline cells of normal and overstimulated chick inner ears

  • Published:
Journal of Neurocytology

Abstract

Hyaline cells are non-sensory epithelial cells of the vibrating part of the basilar membrane of chicks; they receive an extensive efferent innervation. Although these anatomical features suggest roles in auditory transduction, very little is known about the function of these cells. One possible way to understand function is by lesion experiments. We used synapsin-specific antibodies to study changes that occur in the pattern of efferent innervation in hyaline cells after lesion of the sensory epithelium induced by acoustic overstimulation. We found only small changes in hyaline cells after such trauma. These included a small increase in size and a small decrease in density of nerve terminals on hyaline cells. This suggests that hyaline cells and their nerve terminals are less susceptible to acoustic trauma than hair cells. Using neurofilament-specific antibodies we found little or no trauma-induced change in the density of nerve fibres that cross the basilar papilla and reach the hyaline cell region. This finding suggested that trauma to the hair cells does not necessarily lead to changes in the efferent fibres that cross the papilla and extend into the hyaline cell region. Using the trauma and the morphological parameters studied here, it appears that a moderate lesion in the hair cell region in the avian inner ear does not influence the hyaline cells or their innervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ADLER, H. J., KENEALY, J. F. X., DEDIO, R. M. & SAUNDERS, J. C. (1992) Threshold shift, hair cell loss, and hair bundle stiffness following exposure to 120 and 125 dB pure tones in the neonatal chick. Acta Otolaryngologica 112, 444–54.

    Google Scholar 

  • ASHMORE, J. F. & KOLSTON, P. J. (1994) Hair cell based amplification in the cochlea. Current Opinion in Neurobiology 4, 503–8.

    Google Scholar 

  • BENFENATI, F., VALTORTA, F., RUBENSTEIN, J. L., GORELICK, F. S., GREENGARD, P. & CZERNIK, A. J. (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 359, 417–20.

    Google Scholar 

  • COTANCHE, D. A. (1987) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research 30, 181–96.

    Google Scholar 

  • COTANCHE, D. A. & DOPYERA, E. J. (1990) Hair cell and supporting cell response to acoustic trauma in the chick cochlea. Hearing Research 46, 29–40.

    Google Scholar 

  • COTANCHE, D. A., HENSON, M. M. & HENSON, O. W. Jr. (1992) Contractile proteins in the hyaline cells of the chicken cochlea. Journal of Comparative Neurology 324, 353–64.

    Google Scholar 

  • COTANCHE, D. A., MESSANA, E. P. & OFSIE, M. S. (1995) Migration of hyaline cells into the chick basilar papilla during severe noise damage. Hearing Research 91, 148–59.

    Google Scholar 

  • DALLOS, P. (1992) The active cochlea. Journal of Neuroscience 12, 4575–85.

    Google Scholar 

  • DAVIS, H. (1983) An active process in cochlear mechanics. Hearing Research 9, 79–90.

    Google Scholar 

  • DRENCKHAHN, D., MERTE, C., VON DURING, M., SMOLDERS, J. & KLINKE, R. (1991) Actin, myosin, and α-actinin containing filament bundles in hyaline cells of caiman cochlea. Hearing Research 54, 29–38.

    Google Scholar 

  • DÜRING, M. VON, KARDUCK, A. & RICHTER, H. G. (1974) The fine structure of the inner ear in Caiman crocodilus. Zeitschrift für Anatomie und Entwicklungs Geschichte 145, 41–65.

    Google Scholar 

  • FISCHER, F. P. (1992) Quantitative analysis of the innervation of the chicken basilar papilla. Hearing Research 61, 167–78.

    Google Scholar 

  • FROYMOVICH, O., REBALA, V., SALVI, R. J. & RASSAEL, H. (1995) Long-term effect of acoustic trauma on distortion product otoacoustic emissions in chickens. Journal of the Acoustical Society of America 97, 3021–9.

    Google Scholar 

  • GIROD, D. A., DUCKERT, L. G. & RUBEL, E. W. (1989) Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hearing Research 42, 175–94.

    Google Scholar 

  • GOLDENRING, J. R., LASHER, R. S., VALLANO, M. L., UEDA, T., NAITO, S., STERNBERGER, N. H., STERNBERGER, L. A. & DELORENZO, R. J. (1986) Association of synapsin I with neuronal cytoskeleton. Identification in cytoskeletal preparations in vitro and immunocytochemical localization in brain of synapsin I. Journal of Biological Chemistry 261, 8495–504.

    Google Scholar 

  • GREENGARD, P., VALTORTA, F., CZERNIK, A. J. & BENFENATI, F. (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–5.

    Google Scholar 

  • GREENGARD, P., BENFENATI, F. & VALTORTA, F., (1994) Synapsin I, an actin-binding protein regulating synaptic vesicle traffic in the nerve terminal. Advances in Second Messenger Phosphoprotein Research 29, 31–45.

    Google Scholar 

  • HELD, H. (1926) Die cochlea der sauger und der vogel, ihre entwicklung und ihr bau. In Handbuch der normalen und patholgischen physiologie, Vol. 11, p. 493. Berlin: Springer.

    Google Scholar 

  • HIROKAWA, N. (1978a) The ultrastructure of the basilar papilla of the chick. Journal of Comparative Neurology 181, 361–74.

    Google Scholar 

  • HIROKAWA, N. (1978b) Synaptogenesis in the basilar papilla of the chick. Journal of Neurocytology 7, 283–300.

    Google Scholar 

  • JAHNKE, V., LUNDQUIST, P. G. & WERSALL, J. V. (1969) Some morphological aspects of sound perception in birds. Acta Otolaryngologica 67, 583–601.

    Google Scholar 

  • KEMP, D. T. (1986) Otoacoustic emissions, traveling waves and cochlear mechanisms. Hearing Research 22, 95–104.

    Google Scholar 

  • KEPPLER, C., SCHERMULY, L. & KLINKE, R. (1994) The course and morphology of efferent nerve fibres in the papilla basilaris of the pigeon (Columba livia). Hearing Research 74, 259–64.

    Google Scholar 

  • KIMURA, R. S. (1984) Sensory and accessory epithelia of the cochlea. In Ultrastructural Atlas of the Inner Ear (edited by FRIEDMANN, I. & BALLANTYNE, J.) pp. 101–32. London: Butterworths & Co.

    Google Scholar 

  • KLINKE, R. & SMOLDERS, J. W. (1993) Performance of the avian inner ear. Progress in Brain Research 97, 31–43.

    Google Scholar 

  • LLINAS, R., GRUNER, J. A., SUGIMORI, M., MCGUINNESS, T. L. & GREENGARD, P. (1991) Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. Journal of Physiology 436, 257–82.

    Google Scholar 

  • MARSH, R. R., XU, L., MOY, J. P. & SAUNDERS, J. C. (1990) Recovery of the basilar papilla following intense sound exposure. Hearing Research 46, 229–38.

    Google Scholar 

  • MCFADDEN, E. A. & SAUNDERS, J. C. (1989) Recovery of auditory function following intense sound exposure in the neonatal chick. Hearing Research 41, 205–16.

    Google Scholar 

  • NIEMIEC, A. J., RAPHAEL, Y. & MOODY, D. B. (1994) Return of auditory function following structural regeneration following acoustic trauma: behavioral measures from quail. Hearing Research 75, 209–24.

    Google Scholar 

  • ODINOKOVA, G. V. & PROKOF'EVA, L. I. (1975) Innervation of posterior hyaline cells in the bird cochlea. Biologicheskie Nauki 6, 24–6.

    Google Scholar 

  • OESTERLE, E. C., CUNNINGHAM, D. E. & RUBEL, E. W. (1992) Ultrastructure of hyaline, border, and vacuole cells in the chick inner ear. Journal of Comparative Neurology 318, 64–82.

    Google Scholar 

  • OFSIE, M. S. & COTANCHE, D. A. (1996) Distribution of nerve fibres in the basilar papilla of normal and sounddamaged chick cochleae. Journal of Comparative Neurology 370, 281–94.

    Google Scholar 

  • POJE, C. P., SEWELL, D. A. & SAUNDERS, J. C. (1995) The effects of exposure to intense sound on the DC endocochlear potential in the chick. Hearing Research 82, 197–204.

    Google Scholar 

  • RAPHAEL, Y. (1992) Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear. Journal of Neurocytology 21, 663–71.

    Google Scholar 

  • RAPHAEL, Y. (1993) Reorganization of the chick basilar papilla after acoustic trauma. Journal of Comparative Neurology 330, 521–32.

    Google Scholar 

  • ROSAHL, T. W., GEPPERT, M., SPILLANE, D., HERZ, J., HAMMER, R. E., MALENKA, R. C. & SUDHOF, T. C. (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–70.

    Google Scholar 

  • RYALS, B. M., STALFORD, M. D., LAMBERT, P. R. & WESTBROOK, E. W. (1995) Recovery of noise-induced changes in the dark cells of the quail tegmentum vasculosum. Hearing Research 83, 51–6.

    Google Scholar 

  • SAUNDERS, J. C., ADLER, H. J. & PUGLIANO, F. A. (1992) The structural and functional aspects of hair cell regeneration in the chick as a result of exposure to intense rounds. Experimental Neurology 115, 13–17.

    Google Scholar 

  • SLEPECKY, N. B. (1996) Structure of the mammalian cochlea. In The Cochlea (edited by DALLOS, P., POPPER, A. N. & FAY R. R.) pp. 44–129. New York: Springer.

    Google Scholar 

  • STONE, J. S. & COTANCHE, D. A. (1992) Synchronization of hair cell regeneration in the chick cochlea following noise damage. Journal of Cell Science 102, 671–80.

    Google Scholar 

  • TAKASAKA, T. & SMITH, C. A. (1971) The structure and innervation of the pigeon's basilar papilla. Journal of Ultrastructure Research 35, 20–65.

    Google Scholar 

  • TANAKA, K. & SMITH, C. A. (1978) Structure of the chick's inner ear: SEM and TEM study. American Journal of Anatomy 153, 251–71.

    Google Scholar 

  • UEDA, T., GREENGARD, P., BERZINS, K., COHEN, R. S., BLOMBERG, F., GRAB, D. J. & SIEKEVITZ, P. (1977) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP-dependent protein kinase. Journal of Cell Biology 83, 308–19.

    Google Scholar 

  • WANG, Y. & RAPHAEL, Y. (1996) Re-innervation patterns of chick auditory sensory epithelium after acoustic overstimulation. Hearing Research 97, 11–18.

    Google Scholar 

  • WHITEHEAD, M. C. & MOREST, D. K. (1985) The development of innervation patterns in the avian cochlea. Neuroscience 14, 255–76.

    Google Scholar 

  • ZIDANIC, M. & FUCHS, P. A. (1996) Synapsin-like immunoreactivity in the chick cochlea: specific labeling of efferent nerve terminals. Auditory Neuroscience 2, 347–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frisancho, J.C., Fritsma, L. & Raphael, Y. Presynaptic terminals in hyaline cells of normal and overstimulated chick inner ears. J Neurocytol 26, 121–131 (1997). https://doi.org/10.1023/A:1018575811922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018575811922

Keywords

Navigation