Skip to main content
Log in

Structural alterations of the hippocampal formation of adrenalectomized rats: an unbiased stereological study

  • Published:
Journal of Neurocytology

Abstract

Previous studies have demonstrated that adrenalectomy rapidly induces cell death in hippocampal formation. However, these previous studies have involved only qualitative observations or biased estimates. Therefore, the selectivity of the effects of adrenalectomy and the magnitude of changes occurring, remain controversial. The present work employed unbiased stereological tools to examine the effects of adrenalectomy on the number of neurons in, and the volume of, the hippocampal formation. Male rats were adrenalectomized 15,30 or 120 days before sacrifice at 180 days of age. The total number of neurons in the somal layers and hilus of the hippocampal formation was estimated using the optical fractionator. The volume of the different layers of each subdivision in the hippocampal formation was determined according to the Cavalieri principle. A progressive reduction, reaching 43%, was found in the total number of granule cells. Adrenalectomized animals exhibited a reduction in the volume of all layers of the dentate gyrus. No other region of the hippocampal formation displayed significant cell loss or a reduction in volume. In addition, the main neuronal subpopulations of the dentate gyrus were also evaluated, and a reduction in the total number of GABA- and neuropeptide Y-immunoreactive neurons in the molecular and granule cell layers of adrenalectomized rats was found. No quantitative changes were observed in the hilus. To characterize the glial response to the neuronal degeneration, we estimated the total number of cells immunoreactive for glial fibrillary acidic protein in the dentate gyrus. Although no variation in the total number of glial cells was found, signs of astroglial activation were observed in the adrenalectomized group. The present data strengthen the evidence pointing to the critical role of corticosteroids in maintaining the structural integrity of the dentate gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adem, A., Islam, A., Bogdanovic, N., Carlstrom, K. & Winblad, B. (1994) Loss of neurones after long-term adrenalectomy in the adult rat hippocampal formation. NeuroReport 5, 2285–8.

    Google Scholar 

  • Ahima, R. S. & Harlan, R. E. (1990) Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39, 579–604.

    Google Scholar 

  • Ahima, R. S., Krozowski, Z. Harlan, R. E. (1991) Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids. Journal of Comparative Neurology 313, 522–38.

    Google Scholar 

  • Altman, J. & Bayer, S.A. (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. Journal of Comparative Neurology 301, 365–81.

    Google Scholar 

  • Amaral, D. G. & Witter, M. P. (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–91.

    Google Scholar 

  • Andrade, J. P. & Paula-Barbosa, M. M. (1996) Protein malnutrition alters the cholinergic and GABAergic systems of the hippocampal formation of the adult rat: an immunocytochemical study. Neuroscience Letters 211, 211–5.

    Google Scholar 

  • Andrade, J. P., Fernando, P. M., Madeira, M. D., Paula-Barbosa, M. M., Cadete-Leite, A. & Zimmer, J. (1992) Effects of chronic alcohol consumption and withdrawal on the somatostatin-immunoreactive neurons of the rat hippocampal dentate hilus. Hippocampus 2, 65–72.

    Google Scholar 

  • Andrade, J. P., Madeira, M. D. & Paula-Barbosa, M. M. (1995) Effects of long-term malnutrition and rehabilitation on the hippocampal formation of the adult rat. A morphometric study. Journal of Anatomy 187, 379–93.

    Google Scholar 

  • Armstrong, J. N., Mcintyre, D. C., Neubort, S. & Sloviter, R. S. (1993) Learning and memory after adrenalectomy-induced hippocampal dentate granule cell degeneration in the rat. Hippocampus 3, 359–71.

    Google Scholar 

  • Aus der MÜhlen, K. & Ockenfels, H. (1969) Morphologische Veranderungen im Diencephalon und Telencephalon nach Sto¬ rugen des Regelkreises Adenohypophyse-Nebennierenrinde. III. Ergebnisse beim Meerschweinchen nach Verabreichung von Cortison und Hydrocortison. Zeitschrift für Zellforschung 93, 126–41.

    Google Scholar 

  • Bignami, A. Dahl, D. (1974) Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to glial fibrillary acidic protein. Journal of Comparative Neurology 153, 27–38.

    Google Scholar 

  • Conrad, C. D. & Roy, E. J. (1993) Selective loss of hippocampal granule cells following adrenalectomy: implications for spatial memory. Journal of Neuroscience 13, 2582–90.

    Google Scholar 

  • Conrad, C. D. & Roy, E. J. (1995) Dentate gyrus destruction and spatial learning impairment after corticosteroid removal in young and middle-aged rats. Hippocampus 5, 1–15.

    Google Scholar 

  • de Kloet, E. R. (1991) Brain corticosteroid receptor balance and homeostatic control. Frontiers in Neuroendocrinology 12, 95–164.

    Google Scholar 

  • Feldman, S. & Conforti, N. (1980) Participation of the dorsal hippocampus in the glucocorticoid feedback effect on adrenocortical activity. Neuroendocrinology 30, 52–5.

    Google Scholar 

  • Fukui, K., Utsumi, H., Tamada, Y., Kakajima, T. & Ibata, Y. (1996) Selective increase in astrocytic elements in the rat dentate gyrus after chronic toluene exposure studied by GFAP immunocytochemistry and electron microscopy. Neuroscience Letters 203, 85–8.

    Google Scholar 

  • Gage, F. H., Olejniczak, P. & Armstrong, D. M. (1988) Astrocytes are important for sprouting in the septohippocampal circuit. Experimental Neurology 102, 2–13.

    Google Scholar 

  • Gall, C., Rose, G. & Lynch, G. (1979) Proliferative and migratory activity of glial cells in the partially deafferented hippocampus. Journal of Comparative Neurology 183, 539–50.

    Google Scholar 

  • Gould, E., Wooley, C. S. & Mcewen, B. S. (1990) Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience 37, 367–75.

    Google Scholar 

  • Gundersen, H. J. G. (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. Journal of Microscopy 143, 3–45.

    Google Scholar 

  • Gundersen, H. J. G., Bendsten, T. F., Korbo, L., Marcussen, N., MØller, A., Nielsen, K., Nyengaard, J. R., Pakkenberg, B., SØrensen, F. B., Vesterby, A. & West, M. J. (1988a) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathologica Microbiologica et Immunologica Scandinavica 96, 379–94.

    Google Scholar 

  • Gundersen, H. J. G., Bagger, P., Bendsten, T. F., Evans, S. M., Korbo, L., Marcussen, N., MØller, A., Nielsen, K., Nyengaard, J. R., Pakkenberg, B., SØrensen, F. B., Vesterby, A. & West, M. J. (1988b) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathologica Microbiologica et Immunologica Scandinavica 96, 857–81.

    Google Scholar 

  • Herman, J. P. & Watson, S. J. (1995) Stress regulation of mineralocorticoid receptor heteronuclear RNA in rat hippocampus. Brain Research 677, 243–9.

    Google Scholar 

  • Herman, J. P., Schaffer, M. K. H., Young, E. A., Thompson, R., Douglas, J., Akil, H. & Watson, S. J. (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamopituitary adrenocortical axis. Journal of Neuroscience 9, 3072–82.

    Google Scholar 

  • Islam, A., Henrikson, B., Mohammed, A., Winblad, B. & Adem, A. (1995) Behavioural deficits following long-term adrenalectomy. Neuroscience Letters 194, 49–52.

    Google Scholar 

  • Jaarsma, D., Postema, F. & Korf, J. (1992) Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: a silver impregnation study. Hippocampus 2, 143–50.

    Google Scholar 

  • JØrgensen, M. B., Finsen, B. R., Jensen, M. B., Castellano, B., Diemer, N. H. & Zimmer, J. (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Experimental Neurology 120, 70–88.

    Google Scholar 

  • KÖhler, C., Erikson, L., Davies, S. & Chan-Palay, V. (1986) Neuropeptide Y innervation of the hippocampal region in the rat and monkey brain. Journal of Comparative Neurology 244, 384–400.

    Google Scholar 

  • Kruggers, H. J., Medema, R. M., Postema, F. & Korf, J. (1994) Induction of glial fibrillary acid protein immunoreactivity in the rat dentate gyrus after adrenalectomy: comparison with neurodegenerative changes using silver impregnation. Hippocampus 4, 307–14.

    Google Scholar 

  • Landfield, P. W., Baskin, R. K. & Pitler, T. A. (1981) Brain aging correlates: retardation by hormonalpharmacological treatments. Science 241, 581–4.

    Google Scholar 

  • Ling, E. A., Paterson, J. A., Privat, A., Mori, S. & Leblond, C. P. (1973) Investigation of glial cells in semithin sections. I. Identification of glial cells in the brain of young rats. Journal of Comparative Neurology 149, 43–72.

    Google Scholar 

  • Madeira, M. D., Sousa, N., Lima-Andrade, M. T., Calheiros, F., Cadete-Leite, A. Paulabarbosa, M. M. (1992) Selective vulnerability of the hippocampal pyramidal neurons to hypothyroidism in male and female rats. Journal of Comparative Neurology 322, 501–18.

    Google Scholar 

  • Madeira, M. D., Sousa, N., Santer, R. M., Paulabarbosa, M. M. Gundersen, H. J. G. (1995) Age and sex do not affect the volume, cell numbers, or cell size of the suprachiasmatic nucleus of the rat: an unbiased stereological study. Journal of Comparative Neurology 361, 585–601.

    Google Scholar 

  • Maehlen, J. & Torvik, A. (1990) Necrosis of granule cells of hippocampus in adrenocortical failure. Acta Neuropathologica 80, 85–7.

    Google Scholar 

  • Mayhew, T. M. (1992) A review of recent advances in stereology for quantifying neural structure. Journal of Neurocytology 21, 313–28.

    Google Scholar 

  • Mayhew, T. M. & Gundersen, H. J. G. (1996) “If you assume, you can make an ass out of u and me”: a decade of the disector for stereological counting of particles in 3D space. Journal of Anatomy 188, 1–15.

    Google Scholar 

  • Mcewen, B. S. & Gould, E. (1990) Adrenal steroid influences on the survival of hippocampal neurons. Biochemical Pharmacology 40, 2393–402.

    Google Scholar 

  • Mcewen, B. S., de Kloet, E. R. & Rostene, W. (1986) Adrenal steroid receptors and actions in the nervous system. Physiological Reviews 66, 1121–88.

    Google Scholar 

  • Mcneill, T. H., Masters, J. N. & Finch, C. E. (1991) Effect of chronic adrenalectomy on neuron loss and distribution of sulphated glycoprotein-2 in the dentate gyrus of prepubertal rats. Experimental Neurology 111, 140–4.

    Google Scholar 

  • O'Callaghan, J. P., Brinton, R. E. & Mcewen, B. S. (1989) Glucocorticoids regulate the concentration of glial fibrillary acidic protein throughout the brain. Brain Research 494, 159–61.

    Google Scholar 

  • Paula-Barbosa, M. M., BrandÃo, F., Madeira, M. D. & Cadete-Leite, A. (1993) Structural changes in the hippocampal formation after long-term alcohol consumption andwithdrawal in the rat. Addiction 88, 237–47.

    Google Scholar 

  • Reul, J. M. H. & de Kloet, E. R. (1985) Two receptor systems for corticosterone in the rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–11.

    Google Scholar 

  • Reul, J. M. H., van der Bosch, F. R. & de Kloet, E. R. (1987) Relative occupation of type-I and type-II corticosteroid receptors in the brain following stress and dexamethasone treatment: functional implications. Journal of Endocrinology 115, 459–67.

    Google Scholar 

  • Rose, G., Lynch, G. & Cotman, W. (1976) Hypertrophy and redistribution of astrocytes in the deafferented dentate gyrus. Brain Research Bulletin 1, 87–92.

    Google Scholar 

  • Roy, E. J., Lynn, D. M. & Bemm, C. W. (1990) Individual variations in hippocampal dentate degeneration following adrenalectomy. Behavioural Neural Biology 54, 330–6.

    Google Scholar 

  • Sapolsky, R. M., Krey, L. C. & Mcewen, B. S. (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. Journal of Neuroscience 5, 1222–7.

    Google Scholar 

  • Sapolsky, R. M., Krey, L. C. & Mcewen, B. S. (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrine Reviews 7, 284–301.

    Google Scholar 

  • Sapolsky, R. M., Stein-Behrens, B. A. & Armanini, M. P. (1991) Long-term adrenalectomy causes loss of dentate gyrus and pyramidal neurons in the adult hippocampus. Experimental Neurology 114, 246–9.

    Google Scholar 

  • Schmidt-Kastner, R. & Freund, T. (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40, 599–636.

    Google Scholar 

  • Sloviter, R. S. & Nilaver, G. (1987) Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin-like immunoreactivity in the area denteada and hippocampus of the rat. Journal of Comparative Neurology 252, 42–60.

    Google Scholar 

  • Sloviter, R. S., Valiquette, G., Abrams, G. M., Ronk, E. C., Sollas, A. L., Paul, L. A. & Neubort, S. (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science 243, 535–8.

    Google Scholar 

  • Sloviter, R. S., Dean, E. & Neubort, S. (1993a) Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system. Journal of Comparative Neurology 330, 337–51.

    Google Scholar 

  • Sloviter, R. S., Sollas, A. L., Dean, E. & Neubort, S. (1993b) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death. Journal of Comparative Neurology 330, 324–36.

    Google Scholar 

  • Squire, L. R. (1992) Memory and the hippocampus: a synthesis from findings in rats, monkeys and humans, Psychological Reviews 99, 195–231.

    Google Scholar 

  • Sterio, D. C. (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. Journal of Microscopy 134, 127–36.

    Google Scholar 

  • Uno, H., Tarara, R., Else, J., Suleman, M. & Sapolsky, R. (1989) Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience 9, 1705–11.

    Google Scholar 

  • Vaher, P. R., Luine, V. N., Gould, E. & Mcewen, B. S. (1994) Effects of adrenalectomy on spatial memory performance and dentate gyrus morphology. Brain Research 656, 71–8.

    Google Scholar 

  • West, M. J., Slomianka, L. & Gundersen, H. J. G. (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anatomical Record 231, 482–97.

    Google Scholar 

  • Woodson, W., Nitecka, L. & Ben-Ari, Y. (1989) Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. Journal of Comparative Neurology 280, 254–71.

    Google Scholar 

  • Wooley, C. S., Gould, E., Sakai, R. R., Spencer, R. L. & Mcewen, B. S. (1991) Effects of aldosterone or RU28362 treatment on adrenalectomy-induced cell death in the dentate gyrus of the adult rat. Brain Research 554, 312–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, N., Madeira, M.D. & Paula-Barbosa, M.M. Structural alterations of the hippocampal formation of adrenalectomized rats: an unbiased stereological study. J Neurocytol 26, 423–438 (1997). https://doi.org/10.1023/A:1018573105987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018573105987

Keywords

Navigation