Skip to main content
Log in

Kinetics and mechanism of nucleophilic substitution of dichloroarylazopyridinepalladium(II) by pyridine bases

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The reaction of dichloroarylazopyridinepalladium(II) [Pd(aap)Cl2, aap=4-R′C6H4N-N-2-C5H4N; R′= H (1), Me (2), Cl (3)] with pyridine bases [RPy: R-H (a), 2-Me(b), 4-Me(c), 4-Cl(d), 2-Ph(e), 2-PhCH2(f)] has been studied spectrophotometrically in MeCN at 400nm. The products (4) have been isolated and characterized as trans-Pd(RPy)2Cl2. The kinetics of the nucleophilic substitution have been examined under pseudo-first-order conditions with respect to base at 298K and follow the rate law, Rate=k[RPy]2 [Pd(aap)Cl2]. The rate data supports a nucleophilic association path. External addition of Cl− (LiCl) suppresses the rate, which follows the order: k(3)> k(1)>k(2), where k values are linearly related to Hammet σ constants. 2-Substitution in the pyridine base remarkably reduces the rate compared with 4-substitution and is attributed to a steric effect that destabilizes the transition state. The rate decreases with increasing steric crowding at the ortho-position and follows the order: (e)>(f)>(b). The 4-substituted pyridines control the rate via the inductive effect and follow the order: (d)>(a)>(c).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions: A Study of Metal Complexes in Solution, 2nd Edit., Wiley, New York, 1967; (b) E. C. Constable, Polyhedron, 2, 551 (1983); (c) R. G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, 2nd Edit., VCH, Weinheim 1991; (d) R. Romeo, G. Arena, L. M. Scolaro, M. R. Plutino, Inorg. Chim. Acta, 240, 81 (1995); (e) M. Krumn, I. Mutikainen and B. Lippert, Inorg. Chem., 30, 884 (1991).

    Google Scholar 

  2. G. Schroder, B. Lippert, M. Sabat, C. J. L. Lock, K. Faggiani, B. Song and H. Sigel, J. Chem. Soc., Dalton Trans., 3767 (1995); (b) R. B. Martin in S. Lippard (Ed.), Platinum, Gold and Other Metal Chemotherapeutic Agents, Am. Chem. Soc. Rep., 1983, Vol. 209, p. 231.

  3. S. A. Kane and S. J. Lippard, Biochemistry, 35, 2180 (1996); (b) K. J. Barnham, M. I. Djuran, P. S. Mudoch, J. D. Randford and P. J. Sadler, Inorg. Chem., 35, 1065 (1996).

  4. G. Annibale, L. Cattalini, A. A. El-Awady and G. Natile, J. Chem. Soc., Dalton Trans., 802 (1974); (b) J. S. Coe, J. R. Lyons and M. D. Hussain, J. Chem. Soc. (A), 90 (1970).

  5. P. Haake and R. M. Pfeifer, J. Am. Chem. Soc., 92, 4991, 5243 (1970); (b) J. J. MacDougall, J. H. Nelson and F. Mathey, Inorg. Chem., 21, 2145 (1982); (c) J. J. MacDougall, J. H. Nelson and F. Mathey, Inorg. Chem., 19, 709, 1400 (1980).

    Google Scholar 

  6. C. K. Pal. S. Chattopadhyay, C. Sinha, D. Bandyopadhyay and A. Chakravorty, Polyhedron, 18, 999 (1994).

    Google Scholar 

  7. S. Goswami, A. R. Chakravorty and A. Chakravorty, Inorg. Chem., 20, 2245 (1981).

    Google Scholar 

  8. R. J. H. Clark and C. S. Williams, Inorg. Chem., 4, 350 (1965).

    Google Scholar 

  9. Y. Wakatsuki, H. Yamazaki, P. A. Grutsch, M. Santhanam and C. Kutal, J. Am. Chem. Soc., 107, 8153 (1985).

    Google Scholar 

  10. R. W. Hay, A. K. Basak, J. Chem. Soc., Dalton Trans., 1819 (1982); (b) F. L. Wimmer and S. Wimmer, Inorg. Chim. Acta, 149, 1 (1988); (c) K. Inagaki, A. Alinkar, A. Nagai, Y. Kidani and J. Reedjk, Inorg. Chem., 29, 2183 (1990); (d) G. Alibrandi, M. Cusumano, A. Giannello and D. Minniti, J. Chem. Soc., Dalton Trans., 375 (1989); (e) S. Wimmer, P. Castan, F. L. Wimmer and N. P. Johnson, Inorg. Chim. Acta, 142, 13 (1988).

  11. B. K. Ghosh and A. Chakravorty, Coord. Chem. Rev., 95, 239 (1989).

    Google Scholar 

  12. D. G. Coper and J. Powell, J. Am. Chem. Soc., 95, 1102 (1973).

    Google Scholar 

  13. L. Canovese, M. L. Tobe and L. Cattalini, J. Chem. Soc., Dalton Trans., 27 (1985); (b) G. Natile, L. Maresea and L. Cattalini, J. Chem. Soc., Dalton Trans., 651 (1977).

  14. C. Sinha, Transition Met. Chem., 19, 41 (1994).

    Google Scholar 

  15. C. Sinha, Ph.D. Thesis, Jadavpur University, India, 1990.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, R., Misra, T.K., Sinha, C. et al. Kinetics and mechanism of nucleophilic substitution of dichloroarylazopyridinepalladium(II) by pyridine bases. Transition Metal Chemistry 22, 453–458 (1997). https://doi.org/10.1023/A:1018550927193

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018550927193

Keywords

Navigation