Skip to main content
Log in

D.C. I–V characteristics and steady-state photoconductivity of Au/Pb2CrO5/SnO2 sandwich-structure films under illumination in the visible region

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The room temperature d.c. current–voltage (I–V) characteristics of an Au/Pb2CrO5/SnO2 sandwich-structure 1.39 μm thick film have been measured for d.c. voltages, Vd.c., in the range 0.25 V≤Vd.c.≤5.0 V. These measurements were carried out under both dark and visible-light illumination conditions. For Vd.c.<2.5 V, the I–V curves of the sample in both dark and light environments were found to be non-linear and conform to space-charge-limited (SCL) current governed by traps uniformly distributed in energy. At higher d.c. voltages, a nearly Mott–Gurney V2 behaviour of the dark current has been observed, whereas the I–V behaviour of the illuminated specimen was a combination of an ohmic conduction and a V2 dependence at low illumination levels and became highly ohmic at large light intensities. This behaviour can be understood in terms of a reduction in the SCL dark current in favour of a larger ohmic d.c. photocurrent as a result of neutralization of the majority-carrier space charge by the photogenerated minority carriers of the electron–hole pairs produced under the illumination with visible light of energy ℏω≅EG(∼2.1–2.3 eV for the Pb2CrO5 material). The d.c. photocurrent, Iphot, at a fixed d.c. voltage, was found to follow a power-law dependence on light intensity, F, of the form Iphot∝Fγ, with the exponent γ being dependent on the applied d.c. voltage. At the low-voltage side (Vd.c.<1.5 V), γ∼0.5, a value usually obtained when the photoconductivity behaviour is governed by bimolecular recombination mechanisms. As the d.c. voltage is increased further, γ increases monotonically until it saturates at a value of about 0.9 for d.c. voltages beyond 3.5 V, where monomolecular recombination processes seem to be more operative with increasing d.c. voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Negas, J. Am. Ceram. Soc. 51 (1968) 716.

    Article  CAS  Google Scholar 

  2. J. C. Ruckman, R. T. W. Morrison, and R. H. Buck, J. Chem. Soc. Dalton Trans. 426 (1972)

  3. K. Toda and S. Morita, Appl. Phys. A33 (1984) 231.

    Article  CAS  Google Scholar 

  4. Idem, J. Appl. Phys. 55 (1984) 210.

    Article  CAS  Google Scholar 

  5. S. Morita and K. Toda, Appl. Phys. A36 (1985) 131.

    Article  CAS  Google Scholar 

  6. K. Toda and S. Morita, J. Appl. Phys. 57 (1985) 5325.

    Article  CAS  Google Scholar 

  7. S. Morita and K. Toda, ibid. 55 (1984) 2733.

    Article  CAS  Google Scholar 

  8. K. Toda and S. Yoshida, ibid. 63 (1988) 1580.

    Article  CAS  Google Scholar 

  9. Idem, Appl. Phys. 65 (1989) 857.

    Article  CAS  Google Scholar 

  10. S. Yoshida and K. Toda, Appl. Optics 29 (1990) 1793.

    Article  CAS  Google Scholar 

  11. K. Toda, S. Yoshida and H. Ikenaga, J. Mater. Sci. Lett. 12 (1993) 478.

    Article  CAS  Google Scholar 

  12. K. Ozawa, N. Takagi, K. Hiranaka, S. Yanagisawa and K. Asama, Jpn J. Appl. Phys. Suppl. 22-1 (1983) 457.

    Article  Google Scholar 

  13. N. Yukami, M. Ikeda, Y. Harada, M. Nisitani and T. Nishikura, IEEE Trans. Electron Devices ED-33 (1986) 520.

    Article  CAS  Google Scholar 

  14. R. Shukla, P. Khurana and K. K. Srivastava, Philos. Mag. B64 (1991) 389.

    Article  Google Scholar 

  15. M. M. Abdul-Gader, K. A. Wishah, Y. A. Mahmud, K. Toda and R. N. Ahmad-Bitar, Appl. Phys. A49 (1989) 665.

    Article  CAS  Google Scholar 

  16. M. M. Abdul-Gader and K. A. Wishah, J. Mater. Sci., in preparation.

  17. G. Frigerio and C. Paracchini, Solid State Commun. 55 (1985) 625.

    Article  CAS  Google Scholar 

  18. S. S. Simeonov, E. I. Kafedjiiska and A. L. Guerassimov, Phys. Status Solidi(a) 136 (1993) 393.

    Article  CAS  Google Scholar 

  19. J. G. Simmons, in “Hand Book on Thin Film Technology” ch. 14, edited by L. I. Maissel and R. Glang (McGraw-Hill, New York, 1970).

    Google Scholar 

  20. S. M. Sze, “Physics of Semiconductor Devices” (Wiley, New York, 1981).

    Google Scholar 

  21. M. Shur, “Physics of Semiconductor Devices” (Prentice-Hall, Englewood Cliffs, NJ, 1990).

    Google Scholar 

  22. N. F. Mott and E. A. Davies, “Electronic Processes in Non-Crystalline Materials” (Clarendon, Oxford, 1979).

    Google Scholar 

  23. D. R. Lamb, “Electrical Conduction Mechanisms in Thin Insulating Films” (Methuen, London, 1967).

    Google Scholar 

  24. M. A. Lampert and P. Mark, “Current Injection in Solids” (Academic Press, New York, London, 1970).

    Google Scholar 

  25. D. Carles, C. Vautier and C. Viger, Thin Solid Films 17 (1973) 67.

    Article  Google Scholar 

  26. S. Antohe, Phys. Status Solidi(a) 136 (1993) 401.

    Article  CAS  Google Scholar 

  27. V. E. Baranyuk and V. P. Makhnil, Sov. Phys. Semicond. 25 (1991) 130.

    Google Scholar 

  28. A. G. Milnes, “Deep Impurities in Semiconductors” (Wiley, New York, 1973).

    Google Scholar 

  29. S. Hava, J. Appl. Phys. 59 (1986) 4097.

    Article  CAS  Google Scholar 

  30. S. Ozdemir and O. Oktu, J. Non-Cryst. Solids 107 (1989) 289.

    Article  CAS  Google Scholar 

  31. M. Hack, S. Guha and M. Shur, Phys. Rev. B30 (1984) 6991.

    Article  Google Scholar 

  32. R. H. Bube, “Photoconductivity in solids” (Wiley, New York, 1960).

    Google Scholar 

  33. A. Rose, “Photoconductivity and Related Processes” (Interscience, New York, 1963).

    Google Scholar 

  34. S. M. Pyvkin, “Photoelectric Effects in Semiconductors” (Consultants Bureau, New York, 1964).

    Google Scholar 

  35. P. Gorlich, “Photoconductivity in Solids” (Dover, New York, 1967).

    Google Scholar 

  36. J. Mort and D. M. Pai (eds), “Photoconductivity and Related Phenomena” (Elsevier, Amsterdam, New York, 1976).

    Google Scholar 

  37. C. Kittel, “Introduction to Solid State Physics”, 4th Edn (Wiley, Chichester, 1971).

    Google Scholar 

  38. D. Carles, G. Lefrancois and J. P. Larmagnac, J. Phys. Lett. (Paris) 45 (1984) L901.

    Article  Google Scholar 

  39. J. Grenet, D. Carels, G. Lefrancois and J. P. Larmagnae, J. Non-Cryst. Solids 56 (1983) 285.

    Article  CAS  Google Scholar 

  40. S. El-Halawany, R. Bacewiz, J. Filipowicz and R. Trykozko, Phys. Status Solidi A84 (1984) K89.

    Article  Google Scholar 

  41. Z. El Charras, B. Bourahla and C. Vautier, J. Non-Cryst. Solids 155 (1993) 171.

    Article  Google Scholar 

  42. M. F. Kotkata, M. Fustoss-Wegner, L. Toth, G. Zentai and S. A. Nouh, Appl. Phys(J. Phys. D.) 26 (1993) 456.

    Article  CAS  Google Scholar 

  43. V. Halpern, J. Phys. C 21 (1988) 2555.

    Article  Google Scholar 

  44. M. Gailberger and H. Bassler, Phys. Rev. B44 (1991) 8643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ABDUL-GADER, M.M., WISHAH, K.A. D.C. I–V characteristics and steady-state photoconductivity of Au/Pb2CrO5/SnO2 sandwich-structure films under illumination in the visible region. Journal of Materials Science 32, 1269–1275 (1997). https://doi.org/10.1023/A:1018548305176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018548305176

Keywords

Navigation