Skip to main content
Log in

Mechanisms of particulate filled polypropylene finite plastic deformation and fracture

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The plastic deformation and fracture of aluminium hydroxide filled polypropylene has been investigated. A transition between two mechanisms with an increase of the filler volume fraction has been observed. Below a critical filler volume content φcr ≈ 20 vol% (designated region 1) adhesive failure processes and polymer deformation in the neighbourhoods of different particles occur in an uncorrelated manner. Above this critical value (designated region 2) exfoliation along the surface of the initial portion of inclusions causes the formation of craze-like deformation zones transverse to the direction of the loading. The concentration of craze-like zones is essentially determined by the filler content and the level of interphase interaction which in turn depends on the particle size. In region 1 deformation occurs in a macro heterogeneous way with the formation and growth of a neck. The elongation to break decreases with an increase in the mean diameter of the filler phase. At φ>φcr composites, filled with small particles, fail in quasi brittle manner with the formation of a short and narrow neck. In contrast to the case for a small filler concentration, an increase of the inclusion size leads to an increase in the ultimate elongation and a tendency to macro homogeneous yielding. An explanation of the observed behaviour is proposed based on a change in adhesive failure conditions with filler content and size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. NIELSEN, “Mechanical Properties of Polymers and Composites”. (Marcel Dekker, New York, 1974).

    Google Scholar 

  2. N. V. GORBUNOVA, N. N. KNUNYANTZ, V. A. TOPOLKARAEV, L. I. MANEVICH and V. G. OSHMIAN,Mekhanika Kompoz. Mater. (1990) 336.

  3. V. A. TOCHIN, E. N. CSCHUPAK, V. V. TUMANOV, O. V. KULACHINCKAYA and M. I. GAY,ibid. (1984) 635.

  4. I. L. DUBNIKOVA, A. I. PETROSYAN, V. A. TOPOLKARAEV, YU. M. TOVMASYAN, I. N. MESCHKOVA and F. S. D'YACHKOVSKII,Vysokomol. Soyed. A30 (1988) 2345.

    Google Scholar 

  5. V. A. TOPOLKARAEV, N. V. GORBUNOVA, I. L. DUBNIKOVA, T. V. PARAMZINA and F. S. D'YACHKOVSKII,ibid. A32 (1990) 2210.

    Google Scholar 

  6. I. L. DUBNIKOVA, V. A. TOPOLKARAEV, T. V. PARAMZINA, E. V. GOROKHOVA and F. S. D'YACHKOVSKII,ibid. A32 (1990) 841.

    Google Scholar 

  7. M. PEGORARO, A. PENATY, E. CAMMARATA and M. ALIVERTI, in “Polymer blends: Process, Morphology and Properties” (Plenum, New York 1984) Vol. 2, p. 205.

    Book  Google Scholar 

  8. V. A. TOPOLKARAEV, YU. M. TOVMASYAN, I. L. DUBNIKOVA, A. I. PETROSYAN, I. N. MESCHKOVA, A. A. BERLIN, YU. P. GOMZA and V. V. SCHILOV,Mekhanika Kompoz. Mater. (1987) 616.

  9. N. N. KNUNYANTZ, A. V. ZHUK, V. G. OSHMIAN, V. A. TOPOLKARAEV and A. A. BERLIN,Mackromol. Chem.,Macromol. Symp. 44 (1991) 295.

    Article  Google Scholar 

  10. A. V. ZHUK, N. N. KNUNYATZ, V. A. TOPOLKARAEV, V. G. OSHMIAN and A. A. BERLIN,J. Mater. Sci. 28 (1993) 4595.

    Article  CAS  Google Scholar 

  11. V. G. OSHMIAN,Mekhanika Kompoz. Mater. (1992) 34.

  12. I. L. DUBNIKOVA, E. V. GOROKHOVA, A. YA. GORENBERG, V. A. TOPOLKARAEV,Vysokomol. Soyed. A37 (995) p. 1535.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DUBNIKOVA, I.L., OSHMYAN, V.G. & GORENBERG, A.Y. Mechanisms of particulate filled polypropylene finite plastic deformation and fracture. Journal of Materials Science 32, 1613–1622 (1997). https://doi.org/10.1023/A:1018547226983

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018547226983

Keywords

Navigation