Skip to main content
Log in

Oxidation of silicon nitride under standard air or microwave-excited air at high temperature and low pressure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

During the atmospheric re-entry of space shuttles, the thermal constraints due to the hypersonic velocity can lead to very extensive damage on materials of the protective heat shield (oxidation, thermal shock, etc.). In order to test the oxidation resistance of such materials, we have realized an experimental set-up called MESOX which associates a concentrated radiation solar furnace and a microwave generator. The maximal heat flux is 4.5 MW m-2, and the temperature ranges up to 2500 K. The total pressure is in the range 102–104 Pa. For silicon-based ceramics, it is necessary to have a good knowledge of the conditions for the existence of a protective silica layer. The determination of the transition between passive and active oxidation is done, in the case of sintered silicon nitride, under standard and microwave-excited air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. U. T. Ogbuji, J. Am. Ceram. Soc. 75 (1992) 2995.

    Article  CAS  Google Scholar 

  2. L. U. T. Ogbuji and S. R. Bryan, ibid. 78 (1995) 1272.

    Article  CAS  Google Scholar 

  3. L. U. T. Ogbuji, ibid. 78 (1995) 1279.

    Article  CAS  Google Scholar 

  4. K. E. Spear, R. E. Tressler, Z. Zheng and H. Du, Ceram. Trans. 10 (1990) 1.

    CAS  Google Scholar 

  5. H. Du, Thesis in Ceramic Sciences, The Pennsylania State University, USA (1988).

  6. S. C. Singhal, J. Mater. Sci. 11 (1976) 500.

    Article  CAS  Google Scholar 

  7. Idem, Ceram. Int. 2 (1976) 123.

    Article  CAS  Google Scholar 

  8. W. C. Tripp and H. C. Graham, J. Am. Ceram. Soc. 59 (1976) 399.

    Article  CAS  Google Scholar 

  9. J. B. Warburton, J. E. Antill and R. W. M. Hawes, ibid. 61 (1978) 67.

  10. T. Hirai, K. Nihara and T. Goto, ibid. 63 (1980) 419.

    Article  CAS  Google Scholar 

  11. J. E. Sheehan, ibid. 65 (1982) C111.

    Article  CAS  Google Scholar 

  12. H. Du, R. E. Tressler, K. E. Spear and C. G. Pantano, J. Electrochem. Soc. 136 (1989) 1527.

    Article  CAS  Google Scholar 

  13. W. L. Vaughn and H. G. Maahs, J. Am. Ceram. Soc. 73 (1990) 1540.

    Article  CAS  Google Scholar 

  14. H. E. Kim and A. J. Moorhead, ibid. 73 (1990) 3007.

    Article  CAS  Google Scholar 

  15. M. Ishikawa, N. Takeuchi, S. Ishida, M. Wakamatsu and K. Watanabe, J. Ceram. Soc. Jpn 99 (1991) 1084.

    Article  Google Scholar 

  16. T. Narushima, R. Y. Lin, Y. Iguchi and T. Hirai, J. Am. Ceram. Soc. 76 (1993) 1047.

    Article  CAS  Google Scholar 

  17. T. Narushima, T. Goto, Y. Yokoyama, J. Hagiwara, Y. Iguchi and T. Hirai, ibid. 77 (1994) 2369.

    Article  CAS  Google Scholar 

  18. C. Jimenez, J. Perriere, I. Vickridge, J. P. Enard and J. M. Albella, Surf. Coatings Technol. 45 (1991) 147.

    Article  CAS  Google Scholar 

  19. M. Balat, J. Eur. Ceram. Soc. 16 (1996) 55.

    Article  CAS  Google Scholar 

  20. C. Wagner, J. Appl. Phys. 29 (1958) 1295.

    Article  CAS  Google Scholar 

  21. M. Balat, G. Flamant, G. Male and G. Pichelin, J. Mater. Sci. 27 (1992) 697.

    Article  CAS  Google Scholar 

  22. M. Balat, P. Peze, M. Lebrun and G. Olalde, Surf Coatings Technol. 60 (1993) 587.

    Article  CAS  Google Scholar 

  23. M. Balat, C. Dupuy and D. Mocaer, J. High Temp. Chem. Processes 4 (1995) 25.

    CAS  Google Scholar 

  24. G. Eriksson, Chem. Scripta 8 (1973) 100.

    Google Scholar 

  25. R. D. Bird, W. E. Steward and E. N. Lightfoot, Transport phenomena (Wiley, New York, 1960).

    Google Scholar 

  26. Thermodata, Université de Grenoble, 38402 St Martin dHères, France.

  27. M. W. Chase, J. R. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald and A. N. Syuerud, JANAF Thermodynamical Tables, 3rd Edn J. Phys. Ref. Data 14 (1985).

  28. Z. Panek, J. Am. Ceram. Soc. 78 (1995) 1087.

    Article  CAS  Google Scholar 

  29. M. Hillert, S. Jonsson and B. Sundman, Z. Metallkde 83 (1992) 648.

    CAS  Google Scholar 

  30. B. Jr. Fegley, J. Am. Ceram. Soc. 64 (1981) C–124.

    Article  Google Scholar 

  31. Y. S. Touloukian and D. P. De Witt, Thermal radiative properties Nonmetallic solids, Vol. 8 (Plenum, New York, 1972).

    Book  Google Scholar 

  32. L. Ortega, Thèse de Doctorat, Universitè de Grenoble I, France (1993).

  33. F. Bosco and P. Avouris, Phys. Rev. B 38 (1988) 3937.

    Google Scholar 

  34. F. G. Bell and L. Ley, Phys. Chem. B 37 (1988) 8383.

    CAS  Google Scholar 

  35. R. Saoudi, G. Hollinger and A. Straboni, J. Phys. III Fr. 4 (1994) 881.

    CAS  Google Scholar 

  36. J. A. Taylor, Appl. Surf. Sci. 7 (1981) 168.

    Article  CAS  Google Scholar 

  37. C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen and J. A. Taylor, J. Vac. Sci. Technol. 21 (1982) 933.

    Article  CAS  Google Scholar 

  38. R. Berjoan, E. Beche, J. A. Roger and C. H. S. Dupuy, J. High Temp. Chem. Process. 3 (1994) 555.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BALAT, M., CZERNIAK, M. & BERJOAN, R. Oxidation of silicon nitride under standard air or microwave-excited air at high temperature and low pressure. Journal of Materials Science 32, 1187–1193 (1997). https://doi.org/10.1023/A:1018527800633

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018527800633

Keywords

Navigation