Skip to main content
Log in

An improved model for droplet solidification on a flat surface

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An existing model of the deformation and solidification of a single droplet impinging on a cold surface has been revised and improved. The original model is based on a two-dimensional axisymmetric flow approximation of the velocity field, the Neumann solution to the one-dimensional Stefan solidification problem, and an integral mechanical energy balance. The improved model features a more appropriate velocity field which satisfies the no-shear boundary condition at the free surface, and an accurate derivation of the dissipation term from the mechanical energy equation. This equation has been solved numerically. Comparisons of the original and the improved models have been performed. Results show that the original model over-estimates the final splat size by about 10%. The discrepancy is more pronounced at larger Weber numbers, where viscous effects dominate. The effects of the Weber number, We, the Reynolds numbers, Re, and the solidification parameter have been investigated through detailed numerical calculations. Two regimes of spreading/solidification have been identified. If Re/We is small, the process is one of dissipation of the incident droplet kinetic energy; whereas for large values of Re/We the process can rather be characterized as a transfer between kinetic and potential energy. In the latter case, the variations of the final splat size versus the solidification constant exhibit a non-monotonic behaviour. This indicates that, for a given material, the deposition process can be optimized. Correlations relating the final splat size to the process parameters are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. WEI, B. FROUK and D. APELIAN, in “Plasma Processing and Synthesis of Materials”, edited by J. Szekely and D. Apelian (Materials Research Society, Pittsburgh, PA, 1987).

    Google Scholar 

  2. W. LUCAS, “TIG and Plasma Welding-Process Techniques, Recommended Practices and Applications” (Abington, Cambridge, 1990).

    Book  Google Scholar 

  3. Flame Coatings PIY Ltd, Sydney, Australia, “Superiors/ HVOF Coatings-Higher Particle Velocities Produce Better Thermal Spray Coatings”, Internal Report.

  4. X. ZENG, H. LIU, M. CHU and E. J. LAVERNIA,Metall. Trans. B Process Metall. 23A (1992) 3394.

    CAS  Google Scholar 

  5. R. TIWARI, H. HERMAN, S. SAMPATH and B. GUDMUNDSSON,Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 144 (1991) 127.

    Article  Google Scholar 

  6. T. BENNETT and D. POULIKAKOS,J. Mater. Sci. 28 (1993) 963.

    Article  Google Scholar 

  7. D. POULIKAKOS and J. WALDVOGEL, “Transport phenomena relevant to the impact regime of the process of spray deposition; a review”, presented at the 24th National Heat Transfer Conference, Heat Transfer division of the ASME Portland. OR, 5–9 August 1995.

    Google Scholar 

  8. J. MADEJSKI,Int. J. Heat Mass Transfer 19 (1976) 1009.

    Article  Google Scholar 

  9. C. SAN MARCHI, H. LIU, E. J. LAVERNIA and R. H. RANGEL,J. Mater. Sci. 28 (1993) 3313.

    Article  CAS  Google Scholar 

  10. R. H. RANGEL and X. BIAN,Int. J. Heat Mass Transfer 39 (1995) 1591.

    Article  Google Scholar 

  11. Idem,Numerical Heat Transfer,A Applications28 (1995) 589.

    Article  Google Scholar 

  12. J. MADEJSKI,Int. J. Heat Mass Transfer. 26 (1983) 1095.

    Article  Google Scholar 

  13. A. J. MARKWORTH and J. H. SAUNDERS,ibid. 35 (1992) 1836.

    Article  CAS  Google Scholar 

  14. E. COLLINGS, A. MARKWORTH, J. McCOY and J. SAUNDERS,J. Mater. Sci. 25 (1990) 3677.

    Article  CAS  Google Scholar 

  15. J. FUKAI, Z. ZHAO, D. POULIKAKOS, C. M. MEGARIDIS and O. MIYATAKE,Phys. Fluids 5 (1993) 2588.

    Article  CAS  Google Scholar 

  16. G. TRAPAGA and J. SZEKELY,Metall. Trans. B Process Metall. 22B (1991) 901.

    Article  CAS  Google Scholar 

  17. G. TRAPAGA, E. F. MATTHYS, J. J. VALENCIA and J. SZEKELY,ibid. 23B (1992) 70.

    Google Scholar 

  18. H. LIU, E. J. LAVERNIA and R. H. RANGEL,Atomiz. Sprays 4 (1994) 369.

    Article  Google Scholar 

  19. Idem,J. Thermal Spray Technol. 2 (1993) 369.

    Article  CAS  Google Scholar 

  20. Idem,Acta Metall. Mater. 43 (1995) 2053.

    Article  CAS  Google Scholar 

  21. J.-P. DELPLANQUE, E. J. LAVERNIA and R. H. RANGEL,Numerical Heat TransferA 30 (1996) 1.

    Article  CAS  Google Scholar 

  22. M. OZISIK, “Heat Conduction” (Wiley, New York, 1980).

    Google Scholar 

  23. R. B. BIRD, W. E. STEWART and E. W. LIGHTFOOT, “Transport phenomena” (Wiley, New York, 1980).

    Google Scholar 

  24. L. D. LANDAU and E. M. LIFSHITZ, “Fluid Mechanics” (Pergamon Press, New York, 1959).

    Google Scholar 

  25. L. G. LEAL, “Laminar flow and convective transport processes -Scaling principles and asymptotic analysis” (Butterworth-Heinemann, Boston, 1992).

    Google Scholar 

  26. J. D. HOFFMAN, “Numerical Methods for Engineers and Scientists” (McGraw-Hill, New York, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DELPLANQUE, JP., RANGEL, R.H. An improved model for droplet solidification on a flat surface. Journal of Materials Science 32, 1519–1530 (1997). https://doi.org/10.1023/A:1018522521531

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018522521531

Keywords

Navigation