Skip to main content
Log in

Subsolidus phase relationships in the ZrO2-rich part of the ZrO2–Zr3N4 system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zirconia can be stabilized by incorporation of nitrogen. The phase relationships in the ZrO2-rich part of the system ZrO2–Zr3N4 have been investigated using high-temperature X-ray methods. At temperatures above 1000°C, a tetragonal and a cubic phase with randomly distributed vacancies exists, depending on the amount of incorporated nitrogen. This high-temperature behaviour is similar to that of systems like ZrO2–Y2O3, which is another indication for the important role of anion vacancies in zirconia systems. Below 1000°C, β-type phases with an ordered arrangement of anion vacancies are stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Stubican, “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto, H. Yanagida (The American Ceramic Society, Westerville, 1988) p. 71.

    Google Scholar 

  2. P. Duwez, F. Odell and F. H. Brown, J. Am. Ceram. Soc. 35 (1952) 107.

    Article  CAS  Google Scholar 

  3. C. F. Grain, ibid. 50 (1967) 288.

    Article  CAS  Google Scholar 

  4. V. S. Stubican and S. P. Ray, ibid. 60 (1977) 534.

    Article  CAS  Google Scholar 

  5. H. G. Scott, J. Mater. Sci. 72 (1977) 311.

    Article  Google Scholar 

  6. V. S. Stubican, R. C. Hink and S. P. Ray, J. Am. Ceram. Soc. 61 (1978) 17.

    Article  CAS  Google Scholar 

  7. J. R. Hellmann and V. S. Stubican, ibid. 66 (1983) 260.

    Article  CAS  Google Scholar 

  8. C. Pascual and P. Duran, ibid. 66 (1983) 23.

    Article  CAS  Google Scholar 

  9. J. C. Gilles, Bull. Soc. Chim. Fr. 22 (1962) 2118.

    Google Scholar 

  10. R. Collongues, J. C. Gilles, A. M. Lejus, M. Perez, Y Jorba and D. Michel, Mater. Res. Bull. 2 (1967) 837.

    Article  CAS  Google Scholar 

  11. Y. B. Cheng and D. P. Thompson, Special Ceram. 9 (1992) 149.

    Google Scholar 

  12. Idem, J. Am. Ceram. Soc. 76 (1993) 683.

    Article  CAS  Google Scholar 

  13. M. Lerch, ibid., in press.

    Article  Google Scholar 

  14. M. Lerch, F. Krumeich, and R. Hock, in “Transformation Kinetics and Reactivity of Solids”, edited by P. Grange et al., Louvain-la-Neuve, (1995) p. 123.

  15. R. Hock, M. Lerch, K. S. Knight and H. Boysen, Z. Kristallogr. Suppl. 9 (1995) 298.

    Google Scholar 

  16. M. Lerch, R. Hock and E. FÜglein, ibid. 9 (1995) 193.

    Google Scholar 

  17. M. Lerch, L. Jacobsen and G. MÜller, ibid. 8 (1994) 256.

    Google Scholar 

  18. R. C. Garvie and P. S. Nicholson, J. Am. Ceram. Soc. 55 (1972) 303.

    Article  CAS  Google Scholar 

  19. M. Lerch, D. Walter, O. RahÄuser, W. Laqua and K. S. Knight, Z. Kristallogr. Suppl. 9 (1995) 305.

    Google Scholar 

  20. M. Yashima, S. Sasaki, M. Kakihana, Y. Yamaguchi, H. Arashi and M. Yoshimura, Acta Crystallogr. B50 (1994) 663.

    Article  CAS  Google Scholar 

  21. J. W. Adams, H. H. Nakamura, R. P. Ingel and R. W. Rice, J. Am. Ceram. Soc. 68 (1985) 228.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LERCH, M., RAHAUSER, O. Subsolidus phase relationships in the ZrO2-rich part of the ZrO2–Zr3N4 system. Journal of Materials Science 32, 1357–1363 (1997). https://doi.org/10.1023/A:1018521026557

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018521026557

Keywords

Navigation