Physics of the zero-point field: implications for inertia, gravitation and mass


Previous studies of the physics of a classical electromagnetic zero-point field (ZPF) have implicated it as a possible basis for a number of quantum phenomena. Recent work implies that the ZPF may play an even more significant role as the source of inertia and gravitation of matter. Furthermore, this close link between electromagnetism and inertia suggests that it may be fruitful to investigate to what extent the fundamental physical process of electromagnetic radiation by accelerated charged particles could be interpreted as scattering of ambient ZPF radiation. This could also bear upon the origin of radiation reaction and on the existence of the same Planck function underlying both thermal emission and the acceleration-dependent Davies--Unruh effect. If these findings are substantiated by further investigations, a paradigm shift would be necessitated in physics. An overview of these concepts is presented thereby outlining a research agenda which could ultimately lead to revolutionary technologies.

This is a preview of subscription content, log in to check access.


  1. 1

    Planck, M. (1901) Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Physik. 4, 553–63.

    Google Scholar 

  2. 2

    Kuhn, T. (1978) Black Body Theory and the Quantum Discontinuity: 1894–1912. Oxford: Oxford University Press.

    Google Scholar 

  3. 3

    Bohr, N. (1913) On the Constitution of Atoms and Molecules. Phil. Mag. 26(1), 476, 857.

    Google Scholar 

  4. 4

    Einstein, A. and Stern, O. (1913) Ann. Physik 40, 551.

    Google Scholar 

  5. 5

    Boyer, T.H. (1984) Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation. Phys. Rev. D 29, 1096–8.

    Google Scholar 

  6. 6

    Nernst, W. (1916) Über einen Versuch von quantentheoretischen Betrachtungen zur Annahme stetiger Energie Änderungen zuruÈckzukehren. Verhandlungen der Deutschen Physikalischen Gesellschaft 4, 83–116.

    Google Scholar 

  7. 7

    Cole, D.C. (1993) In Essays on Formal Aspects of Electromagnetic Theory, A. Lakhatakia (ed.) Singapore: World Scientific pp. 501–32. (For a more extensive and detailed review of SED that appeared after acceptance of this paper, see [29] below.)

    Google Scholar 

  8. 8

    Milonni, P.W. (1994) The Quantum Vacuum: An Introduction to Quantum Electrodynamics New York: Academic Press.

    Google Scholar 

  9. 9

    de Broglie, L. (1962) New Perspectives in Physics. New York: Basic Books Publ. Co.

    Google Scholar 

  10. 10

    Nelson, E. (1966) Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 150, 1079–85; (1967) Dynamical Theories of Brownian Motion, Princeton University Press.

    Google Scholar 

  11. 11

    Boyer, T.H. (1975) Random Electrodynamics: The Theory of Classical Electrodynamics with Classical Zero-Point Field Radiation. Phys. Rev. D 11, 790–808.

    Google Scholar 

  12. 12

    Rueda, A. (1993) Stochastic Electrodynamics with Particle Structure Part I: Zero-Point Induced Brownian Motion. Foundat. Phys. Lett. 6(1), 75–108; Stochastic Electrodynamics with Particle Structure Part II: Toward a Zero-Point Induced Wave Behaviour 6(2), 139–66.

    Google Scholar 

  13. 13

    Haisch, B., Rueda, A. and Puthoff, H.E. (1994) Inertia as a Zero Point Field Lorentz Force. Phys. Rev. A 49, 678–94. [HRP]

    Google Scholar 

  14. 14

    Sakharov, A. (1968) Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Soviet Physics-Doklady 12(11), 1040–1.

    Google Scholar 

  15. 15

    Puthoff, H.E. (1989) Gravity as a Zero-Point-Fluctuation Force. Phys. Rev. A 39, 2333–42.

    Google Scholar 

  16. 16

    Einstein, A. (1911) Ü ber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Physik. 35, 898–908.

    Google Scholar 

  17. 17

    Einstein, A. (1955) The Meaning of Relativity. Princeton University Press.

  18. 18

    Puthoff, H.E. (1989) Source of vacuum electromagnetic zero-point energy. Phys. Rev. A 40, 4857–62; 44, 3385–6.

    Google Scholar 

  19. 19

    Rohrlich, F. (1990) Classical Charged Particles. New York: Addison Wesley.

    Google Scholar 

  20. 20

    Puthoff, H.E. (1987) Ground-state of Hydrogen as a Zero-Point-Fluctuation-Determined State. Phys. Rev. D 35, 3266–9.

    Google Scholar 

  21. 21

    McCrea, W. (1986) Time, Vacuum and Cosmos. Q. J. Royal Astr. Soc. 27, 137–52.

    Google Scholar 

  22. 22

    Mashhoon, B. (1994) On the Origin of Inertial Accelerations. Il Nuovo Cimento, 109B(2), 187–99.

    Google Scholar 

  23. 23

    Brans, C. and Dicke, R.H. (1961) Mach's Principle and a Relativistic Theory of Gravitation. Phys. Rev. 124, 925–35.

    Google Scholar 

  24. 24

    Rohrlich, F. (1969) Ann. Phys. 22, 169.

    Google Scholar 

  25. 25

    Einstein, A. and Hopf, L. (1910) Ann. Physik. 33, 1096 and 1105.

    Google Scholar 

  26. 26

    Rueda, A., Haisch, B. and Cole, D.C. (1995) Vacuum Zero-Point Field Pressure Instability in Astrophysical Plasmas and the Formation of Cosmic Voids. Astrophys. J. 445, 7–16.

    Google Scholar 

  27. 27

    Rueda, A. (1990) Electromagnetic vacuum and intercluster voids: zero-point-field-induced density instability at ultra-low densities. Phys. Lett. A 147, 423.

    Google Scholar 

  28. 28

    Rueda, A. (1984) Spontaneous free-particle acceleration in quantum electrodynamics with a real zero-point field. Phys. Rev. A 30, 2221–6 Survey and Examination of Electromagnetic Vacuum Accelerating Effect and Its Astrophysical Consequences. Space Sci. Rev. 53, 223–345.

    Google Scholar 

  29. 29

    de la PenÄ, L. and Cetto, A.M. (1996) The Quantum Dice: An introduction to stochastic electrodynamics. Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  30. 30

    Milonni, P.W., Cook, R.J. and Goggin, M.E. (1988) Radiation pressure from the vacuum: Physical interpretation of the Casimir force. Phys. Rev. A 38 1621–3.

    Google Scholar 

  31. 31

    Milgrom, M. (1983) A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. Astrophys. J. 270, 365–70.

    Google Scholar 

  32. 32

    Mach, E. (1883) The Science of Mechanics, Chap. II, Sec. VI. Illinois: Open Court.

    Google Scholar 

  33. 33

    Barbour, J. (1988) Einstein and Mach's Principle. In Studies in the History of General Relativity, J. Eisenstaedt and A.J. Kox (eds) pp. 125–153. Boston: Birkhaäuser.

    Google Scholar 

  34. 34

    Sciama, D.W. (1953) On the Origin of Inertia. M. Not. Royal Astr. Soc. 113, 34–42.

    Google Scholar 

  35. 35

    McCrea, W.H. (1971) Doubts about Mach's Principle. Nature 230, 95–7.

    Google Scholar 

  36. 36

    Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, pp. 86–8. New York: Wiley and Sons.

    Google Scholar 

  37. 37

    Davies, P.C.W. (1975) J. Phys. A 8, 609.

    Google Scholar 

  38. 38

    Unruh, W.G. (1976) Notes on black-hole evaporation. Phys. Rev. 870–92.

  39. 39

    Boyer, T.H. (1984) Thermal Effects of Acceleration for a Classical Dipole Oscillator in Classical Electromagnetic Zero-Point Radiation. Phys. Rev. D 1089–95.

  40. 40

    Lindley, D. (1993) The End of Physics. Basic Books: New York.

    Google Scholar 

  41. 41

    Rueda, A. (1996) Inertia as a Vacuum Effect: The Classical Electromagnetic Zero-Point Radiation Impinging on Accelerated Objects (in preparation).

  42. 42

    Rueda, A. and Haisch, B. (1995) A View on the Origin of Inertia (in preparation).

  43. 43

    Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. San Francisco: W.H. Freeman.

    Google Scholar 

  44. 44

    Surdin, M. (1971) Le Champs Electromagnetique Fluctuant de l'Univers. Ann. Inst. Henri Poincare 15, 203–41; (1978) The Steady State Universe Revisited, with Stochastic Electrodynamics as a Guide. Found. Phys. 8, 341–57.

    Google Scholar 

  45. 45

    Huang, K. (1952) On the Zitterbewegung of the Dirac Electron. Am. J. Phys. 20, 479–84.

    Google Scholar 

  46. 46

    Carlip, S. (1993) Comment on ‘Gravity as a Zero-Point Fluctuation Force’. Phys. Rev. A 47, 3452–3.

    Google Scholar 

  47. 47

    Puthoff, H.E. (1993) Reply to ‘Comment on Gravity as a Zero-Point Fluctuation Force.’ Phys. Rev. A 47, 3454–5.

    Google Scholar 

  48. 48

    Datta, D.P. (1995) On the gravitational properties of vacuum energy. Class. Quantum Grav. 12, 2499–2504.

    Google Scholar 

  49. 49

    Puthoff, H.E. (1996) Quantum Ground States as Equilibrium Particle-Vacuum Interaction States in preparation.

  50. 50

    Claverie, P., Pesquera, L. and Soto, F. (1980) Phys. Lett. 80A, 113 (and references therein).

    Google Scholar 

  51. 51

    Milonni, P.W. (1982) Why Spontaneous Emission? Am. J. Phys. 52, 340–3.

    Google Scholar 

  52. 52

    Milonni, E.W. (1988) Different Ways of Looking at the Electromagnetic Vacuum. Physica Scripta T21, 102–9.

    Google Scholar 

  53. 53

    Haroche, S. and Raimond, J.-M. (1993) Scientific American, April, 54–62.

  54. 54

    Dirac, P.A.M. (1951) Is there an Aether? Nature 168, 906–7.

    Google Scholar 

  55. 55

    Rindler, W. and Mishra, L. (1993) The non-reciprocity of relative acceleration in relativity. Phys. Lett. A 173, 105–8.

    Google Scholar 

  56. 56

    Mashhoon, B. (1994) On the Origin of Inertial Accelerations. Il Nuovo Cimento, 109B(2), 187–99.

    Google Scholar 

  57. 57

    Rueda, A. (1990) Survey and examination of an electromagnetic vacuum accelerating effect and its astrophysical consequences. Space Sci. Rev. 53, 223–345.

    Google Scholar 

  58. 58

    Cole, D.C. (1995), Possible thermodynamic law violations and astrophysical issues for secular acceleration of electrodynamic particles in the vacuum. Phys. Rev. E, 51, 1663–1674.

    Google Scholar 

  59. 59

    Rueda, A. and Cavalleri, G. (1983) Zitterbewegung in stochastic electrodynamics and implications on a zero-point-field acceleration mechanism. Il Nuovo Cimento 6C, 239–60.

    Google Scholar 

  60. 60

    Bird, D.J. et al. (1993) Phys. Rev. Lett. 71, 3401.

    Google Scholar 

  61. 61

    Rueda, A. (1981) Behavior of classical particles immersed in the classical electromagnetic zero-point field. Phys. Rev. A 23, 2020–40.

    Google Scholar 

  62. 62

    MacGregor, M. (1992) The Enigmatic Electron. Dordrecht: Kluwer.

    Google Scholar 

  63. 63

    Weisskopf, V.F. (1949) Recent Developments in the Theory of the Electron. Rev. Mod. Phys. 21, 305–15.

    Google Scholar 

  64. 64

    Gaeta, G. (1993) EPR and stochastic mechanics. Phys. Lett. A 175, 267–8.

    Google Scholar 

  65. 65

    Scharnhorst, K. (1990) On propagation of light in the vacuum between plates. Phys. Lett. B235, 354–9.

    Google Scholar 

  66. 66

    Forward, R.L. (1984) Extracting electrical energy from the vacuum by cohesion of charged foliated conductors. Phys. Rev. B 30, 1700–2.

    Google Scholar 

  67. 67

    Cole, D.C. and Puthoff, H.E. (1993) Extracting energy and heat from the vacuum. Phys. Rev. E 48, 1562–5.

    Google Scholar 

  68. 68

    Schwinger, J. (1993) Casimir Light: The Source. Proc. Natl. Acad. Sci. USA 90, 2105–6.

    Google Scholar 

  69. 69

    Møller, C. (1972) The Theory of Relativity. Oxford: Clarerdon Press, Chap. 4.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haisch, B., Rueda, A. & Puthoff, H. Physics of the zero-point field: implications for inertia, gravitation and mass. Speculations in Science and Technology 20, 99–114 (1997).

Download citation

  • zero-point field;
  • stochastic electrodynamics;
  • quantum electrodynamics;
  • quantum vacuum;
  • inertia;
  • gravitation;
  • dark matter;
  • mass;
  • relativity