Speculations in Science and Technology

, Volume 20, Issue 1, pp 99–114 | Cite as

Physics of the zero-point field: implications for inertia, gravitation and mass

  • Bernard Haisch
  • Alfonson Rueda
  • H.E. Puthoff


Previous studies of the physics of a classical electromagnetic zero-point field (ZPF) have implicated it as a possible basis for a number of quantum phenomena. Recent work implies that the ZPF may play an even more significant role as the source of inertia and gravitation of matter. Furthermore, this close link between electromagnetism and inertia suggests that it may be fruitful to investigate to what extent the fundamental physical process of electromagnetic radiation by accelerated charged particles could be interpreted as scattering of ambient ZPF radiation. This could also bear upon the origin of radiation reaction and on the existence of the same Planck function underlying both thermal emission and the acceleration-dependent Davies--Unruh effect. If these findings are substantiated by further investigations, a paradigm shift would be necessitated in physics. An overview of these concepts is presented thereby outlining a research agenda which could ultimately lead to revolutionary technologies.

zero-point field; stochastic electrodynamics; quantum electrodynamics; quantum vacuum; inertia; gravitation; dark matter; mass; relativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Planck, M. (1901) Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Physik. 4, 553–63.Google Scholar
  2. 2.
    Kuhn, T. (1978) Black Body Theory and the Quantum Discontinuity: 1894–1912. Oxford: Oxford University Press.Google Scholar
  3. 3.
    Bohr, N. (1913) On the Constitution of Atoms and Molecules. Phil. Mag. 26(1), 476, 857.Google Scholar
  4. 4.
    Einstein, A. and Stern, O. (1913) Ann. Physik 40, 551.Google Scholar
  5. 5.
    Boyer, T.H. (1984) Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation. Phys. Rev. D 29, 1096–8.Google Scholar
  6. 6.
    Nernst, W. (1916) Über einen Versuch von quantentheoretischen Betrachtungen zur Annahme stetiger Energie Änderungen zuruÈckzukehren. Verhandlungen der Deutschen Physikalischen Gesellschaft 4, 83–116.Google Scholar
  7. 7.
    Cole, D.C. (1993) In Essays on Formal Aspects of Electromagnetic Theory, A. Lakhatakia (ed.) Singapore: World Scientific pp. 501–32. (For a more extensive and detailed review of SED that appeared after acceptance of this paper, see [29] below.)Google Scholar
  8. 8.
    Milonni, P.W. (1994) The Quantum Vacuum: An Introduction to Quantum Electrodynamics New York: Academic Press.Google Scholar
  9. 9.
    de Broglie, L. (1962) New Perspectives in Physics. New York: Basic Books Publ. Co.Google Scholar
  10. 10.
    Nelson, E. (1966) Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 150, 1079–85; (1967) Dynamical Theories of Brownian Motion, Princeton University Press.Google Scholar
  11. 11.
    Boyer, T.H. (1975) Random Electrodynamics: The Theory of Classical Electrodynamics with Classical Zero-Point Field Radiation. Phys. Rev. D 11, 790–808.Google Scholar
  12. 12.
    Rueda, A. (1993) Stochastic Electrodynamics with Particle Structure Part I: Zero-Point Induced Brownian Motion. Foundat. Phys. Lett. 6(1), 75–108; Stochastic Electrodynamics with Particle Structure Part II: Toward a Zero-Point Induced Wave Behaviour 6(2), 139–66.Google Scholar
  13. 13.
    Haisch, B., Rueda, A. and Puthoff, H.E. (1994) Inertia as a Zero Point Field Lorentz Force. Phys. Rev. A 49, 678–94. [HRP]Google Scholar
  14. 14.
    Sakharov, A. (1968) Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Soviet Physics-Doklady 12(11), 1040–1.Google Scholar
  15. 15.
    Puthoff, H.E. (1989) Gravity as a Zero-Point-Fluctuation Force. Phys. Rev. A 39, 2333–42.Google Scholar
  16. 16.
    Einstein, A. (1911) Ü ber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Physik. 35, 898–908.Google Scholar
  17. 17.
    Einstein, A. (1955) The Meaning of Relativity. Princeton University Press.Google Scholar
  18. 18.
    Puthoff, H.E. (1989) Source of vacuum electromagnetic zero-point energy. Phys. Rev. A 40, 4857–62; 44, 3385–6.Google Scholar
  19. 19.
    Rohrlich, F. (1990) Classical Charged Particles. New York: Addison Wesley.Google Scholar
  20. 20.
    Puthoff, H.E. (1987) Ground-state of Hydrogen as a Zero-Point-Fluctuation-Determined State. Phys. Rev. D 35, 3266–9.Google Scholar
  21. 21.
    McCrea, W. (1986) Time, Vacuum and Cosmos. Q. J. Royal Astr. Soc. 27, 137–52.Google Scholar
  22. 22.
    Mashhoon, B. (1994) On the Origin of Inertial Accelerations. Il Nuovo Cimento, 109B(2), 187–99.Google Scholar
  23. 23.
    Brans, C. and Dicke, R.H. (1961) Mach's Principle and a Relativistic Theory of Gravitation. Phys. Rev. 124, 925–35.Google Scholar
  24. 24.
    Rohrlich, F. (1969) Ann. Phys. 22, 169.Google Scholar
  25. 25.
    Einstein, A. and Hopf, L. (1910) Ann. Physik. 33, 1096 and 1105.Google Scholar
  26. 26.
    Rueda, A., Haisch, B. and Cole, D.C. (1995) Vacuum Zero-Point Field Pressure Instability in Astrophysical Plasmas and the Formation of Cosmic Voids. Astrophys. J. 445, 7–16.Google Scholar
  27. 27.
    Rueda, A. (1990) Electromagnetic vacuum and intercluster voids: zero-point-field-induced density instability at ultra-low densities. Phys. Lett. A 147, 423.Google Scholar
  28. 28.
    Rueda, A. (1984) Spontaneous free-particle acceleration in quantum electrodynamics with a real zero-point field. Phys. Rev. A 30, 2221–6 Survey and Examination of Electromagnetic Vacuum Accelerating Effect and Its Astrophysical Consequences. Space Sci. Rev. 53, 223–345.Google Scholar
  29. 29.
    de la PenÄ, L. and Cetto, A.M. (1996) The Quantum Dice: An introduction to stochastic electrodynamics. Dordrecht: Kluwer Academic Publisher.Google Scholar
  30. 30.
    Milonni, P.W., Cook, R.J. and Goggin, M.E. (1988) Radiation pressure from the vacuum: Physical interpretation of the Casimir force. Phys. Rev. A 38 1621–3.Google Scholar
  31. 31.
    Milgrom, M. (1983) A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis. Astrophys. J. 270, 365–70.Google Scholar
  32. 32.
    Mach, E. (1883) The Science of Mechanics, Chap. II, Sec. VI. Illinois: Open Court.Google Scholar
  33. 33.
    Barbour, J. (1988) Einstein and Mach's Principle. In Studies in the History of General Relativity, J. Eisenstaedt and A.J. Kox (eds) pp. 125–153. Boston: Birkhaäuser.Google Scholar
  34. 34.
    Sciama, D.W. (1953) On the Origin of Inertia. M. Not. Royal Astr. Soc. 113, 34–42.Google Scholar
  35. 35.
    McCrea, W.H. (1971) Doubts about Mach's Principle. Nature 230, 95–7.Google Scholar
  36. 36.
    Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, pp. 86–8. New York: Wiley and Sons.Google Scholar
  37. 37.
    Davies, P.C.W. (1975) J. Phys. A 8, 609.Google Scholar
  38. 38.
    Unruh, W.G. (1976) Notes on black-hole evaporation. Phys. Rev. 870–92.Google Scholar
  39. 39.
    Boyer, T.H. (1984) Thermal Effects of Acceleration for a Classical Dipole Oscillator in Classical Electromagnetic Zero-Point Radiation. Phys. Rev. D 1089–95.Google Scholar
  40. 40.
    Lindley, D. (1993) The End of Physics. Basic Books: New York.Google Scholar
  41. 41.
    Rueda, A. (1996) Inertia as a Vacuum Effect: The Classical Electromagnetic Zero-Point Radiation Impinging on Accelerated Objects (in preparation).Google Scholar
  42. 42.
    Rueda, A. and Haisch, B. (1995) A View on the Origin of Inertia (in preparation).Google Scholar
  43. 43.
    Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. San Francisco: W.H. Freeman.Google Scholar
  44. 44.
    Surdin, M. (1971) Le Champs Electromagnetique Fluctuant de l'Univers. Ann. Inst. Henri Poincare 15, 203–41; (1978) The Steady State Universe Revisited, with Stochastic Electrodynamics as a Guide. Found. Phys. 8, 341–57.Google Scholar
  45. 45.
    Huang, K. (1952) On the Zitterbewegung of the Dirac Electron. Am. J. Phys. 20, 479–84.Google Scholar
  46. 46.
    Carlip, S. (1993) Comment on ‘Gravity as a Zero-Point Fluctuation Force’. Phys. Rev. A 47, 3452–3.Google Scholar
  47. 47.
    Puthoff, H.E. (1993) Reply to ‘Comment on Gravity as a Zero-Point Fluctuation Force.’ Phys. Rev. A 47, 3454–5.Google Scholar
  48. 48.
    Datta, D.P. (1995) On the gravitational properties of vacuum energy. Class. Quantum Grav. 12, 2499–2504.Google Scholar
  49. 49.
    Puthoff, H.E. (1996) Quantum Ground States as Equilibrium Particle-Vacuum Interaction States in preparation.Google Scholar
  50. 50.
    Claverie, P., Pesquera, L. and Soto, F. (1980) Phys. Lett. 80A, 113 (and references therein).Google Scholar
  51. 51.
    Milonni, P.W. (1982) Why Spontaneous Emission? Am. J. Phys. 52, 340–3.Google Scholar
  52. 52.
    Milonni, E.W. (1988) Different Ways of Looking at the Electromagnetic Vacuum. Physica Scripta T21, 102–9.Google Scholar
  53. 53.
    Haroche, S. and Raimond, J.-M. (1993) Scientific American, April, 54–62.Google Scholar
  54. 54.
    Dirac, P.A.M. (1951) Is there an Aether? Nature 168, 906–7.Google Scholar
  55. 55.
    Rindler, W. and Mishra, L. (1993) The non-reciprocity of relative acceleration in relativity. Phys. Lett. A 173, 105–8.Google Scholar
  56. 56.
    Mashhoon, B. (1994) On the Origin of Inertial Accelerations. Il Nuovo Cimento, 109B(2), 187–99.Google Scholar
  57. 57.
    Rueda, A. (1990) Survey and examination of an electromagnetic vacuum accelerating effect and its astrophysical consequences. Space Sci. Rev. 53, 223–345.Google Scholar
  58. 58.
    Cole, D.C. (1995), Possible thermodynamic law violations and astrophysical issues for secular acceleration of electrodynamic particles in the vacuum. Phys. Rev. E, 51, 1663–1674.Google Scholar
  59. 59.
    Rueda, A. and Cavalleri, G. (1983) Zitterbewegung in stochastic electrodynamics and implications on a zero-point-field acceleration mechanism. Il Nuovo Cimento 6C, 239–60.Google Scholar
  60. 60.
    Bird, D.J. et al. (1993) Phys. Rev. Lett. 71, 3401.Google Scholar
  61. 61.
    Rueda, A. (1981) Behavior of classical particles immersed in the classical electromagnetic zero-point field. Phys. Rev. A 23, 2020–40.Google Scholar
  62. 62.
    MacGregor, M. (1992) The Enigmatic Electron. Dordrecht: Kluwer.Google Scholar
  63. 63.
    Weisskopf, V.F. (1949) Recent Developments in the Theory of the Electron. Rev. Mod. Phys. 21, 305–15.Google Scholar
  64. 64.
    Gaeta, G. (1993) EPR and stochastic mechanics. Phys. Lett. A 175, 267–8.Google Scholar
  65. 65.
    Scharnhorst, K. (1990) On propagation of light in the vacuum between plates. Phys. Lett. B235, 354–9.Google Scholar
  66. 66.
    Forward, R.L. (1984) Extracting electrical energy from the vacuum by cohesion of charged foliated conductors. Phys. Rev. B 30, 1700–2.Google Scholar
  67. 67.
    Cole, D.C. and Puthoff, H.E. (1993) Extracting energy and heat from the vacuum. Phys. Rev. E 48, 1562–5.Google Scholar
  68. 68.
    Schwinger, J. (1993) Casimir Light: The Source. Proc. Natl. Acad. Sci. USA 90, 2105–6.Google Scholar
  69. 69.
    Møller, C. (1972) The Theory of Relativity. Oxford: Clarerdon Press, Chap. 4.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • Bernard Haisch
    • 1
  • Alfonson Rueda
    • 2
  • H.E. Puthoff
    • 3
  1. 1.Dept 91-30Lockheed Martin Solar and Astrophysics LaboratoryPalo AltoUSA
  2. 2.Department of Electrical EngineeringCalifornia State UniversityLong BeachUSA
  3. 3.Institute for Advanced Studies at AustinAustinUSA

Personalised recommendations