Skip to main content
Log in

The Poole-Frenkel conduction mechanismin Mo-Cu2O-Au thin film structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films of cuprous oxide (4.6 μm) were electrodeposited on molybdenum. Gold contacts were vacuum evaporated on the films to form devices. These films showed relatively low electrical resistivities at around 106 Ω cm and a charge transport mechanism which is different from the space charge limited current conduction previously reported for the 1011 Ω cm films. The charge transport mechanism in these films was determined by isothermal measurements of the devices current-voltage (I–V) characteristics at some selected temperatures in the range of 78–321 K. In this temperature range the dominant transport mechanism can be explained by the Poole-Frenkel effect through the relation I = VG0exp(−φ0L/kT)exp(BLV1/2)+I0exp(−φ0H/kT)exp(BHV1/2) where the numerical values of the parameters are measured. φ0L = 0.12 eV is the zero-field ionization energy of a shallow acceptor-type level (measured from the edge of the valence band) which has the dominant effect in the range of 78–230 K. Similarly φ0H = 0.70 eV corresponds to a deep level dominant in the high-temperature range 230–321 K. In the high-temperature region a 2.7 μm thick hole accumulation layer forms beneath the oxide-gold interface, assuming the ionized deep level is doubly charged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. RAKHSHANI, Solid State Electron. 29 (1986) 7.

    Article  CAS  Google Scholar 

  2. B. P. RAI, Solar Cells 25 (1988) 265.

    Article  CAS  Google Scholar 

  3. A. K. MUKHOPADHYAY, A. K. CHAKRABORTY, A. P. CHATTERJEE and S. K. LAHIRI, Thin Solid Films 209 (1992) 92.

    Article  CAS  Google Scholar 

  4. A. P. CHATTERJEE, A. K. MUKHOPADHYAY, A. K. CHAKRABORTY, R. N. SASMAL and S. K. LAHIRI, Mater. Lett. 11 (1991) 358.

    Article  CAS  Google Scholar 

  5. A. E. RAKHSHANI and J. VARGHESE, Thin Solid Films 157 (1988) 87.

    Article  CAS  Google Scholar 

  6. Idem, Solar Energy Mater. 15 (1987) 237.

    Article  CAS  Google Scholar 

  7. I. GROZDANOV, Mater. Lett. 19 (1994) 281.

    Article  CAS  Google Scholar 

  8. A. E. RAKHSHANI, J. Appl. Phys. 69 (1991) 2365.

    Article  CAS  Google Scholar 

  9. Idem, ibid. 69 (1991) 2290.

    Article  CAS  Google Scholar 

  10. A. E. RAKHSHANI, A. A. AL-JASSAR and J. VARGHESE, Thin Solid Films 148 (1987) 191.

    Article  CAS  Google Scholar 

  11. A. E. RAKHSHANI and J. VARGHESE, Phys. Status Solidi 101a (1987) 479.

    Google Scholar 

  12. J. G. SIMMONS, in ‘‘DC Conduction in Thin Films’’, edited by J. G. Cook (Mills and Boon, London, 1971) p. 1.

    Google Scholar 

  13. S. M. SZE, ‘‘Physics of Semiconductor Devices’‘’ (Wiley, New York, 1969) pp. 364, 469).

    Google Scholar 

  14. J. FRENKEL, Tech. Phys. 5 (1938) 685.

    CAS  Google Scholar 

  15. Idem, J. Phys. Rev. 54 (1938) 647.

    Article  Google Scholar 

  16. C. A. MEAD, Phys. Rev. 128 (1962) 2088.

    Article  CAS  Google Scholar 

  17. J. G. SIMMONS, ibid. 155 (1967) 657.

    Article  CAS  Google Scholar 

  18. E. H. RHODERICK, in ‘‘MetalSemiconductor Contacts’’, (Clarendon Press, Oxford 1978).

    Google Scholar 

  19. M. MISSOUS and E. H. RHODERICK, J. Appl. Phys. 69 (1991) 7142.

    Article  CAS  Google Scholar 

  20. R. M. HILL, Thin Solid Films 1 (1967) 39.

    Article  CAS  Google Scholar 

  21. D. S. CAMPBELL, in ‘‘Active and Passive Thin Film Devices’’, edited by T. J. Coutts (Academic Press, London 1978) p. 113.

    Google Scholar 

  22. A. K. JONSCHER, Thin Solid Films 1 (1967) 213.

    Article  CAS  Google Scholar 

  23. J. J. MARES, J. KRISTOFIK and V. SMID, Solid State Electron. 31 (1988) 1309.

    Article  CAS  Google Scholar 

  24. W. R. BUCHWALD and N. M. JOHNSON, J. Appl. Phys. 64 (1988) 958.

    Article  Google Scholar 

  25. K. MOORJANI and C. FELDMAN, J. Non-Cryst. Solids 4 (1970) 248.

    Article  CAS  Google Scholar 

  26. S. M. SZE, J. Appl. Phys. 38 (1967) 2951.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAKHSHANI, A.E., MAKDISI, Y. & MATHEW, X. The Poole-Frenkel conduction mechanismin Mo-Cu2O-Au thin film structures. Journal of Materials Science: Materials in Electronics 8, 207–211 (1997). https://doi.org/10.1023/A:1018506516020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018506516020

Keywords

Navigation