Modelling Fungal (Neozygites cf. Floridana) Epizootics in Local Populations of Cassava Green Mites (Mononychellus Tanajoa)

Abstract

The fungus, Neozygitis cf. floridana is parasitic on the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) in South America and may be considered for classical biological control of cassava green mites in Africa, where cassava is an important subsistence crop, cassava green mites are an imported pest and specific natural enemies are lacking. Spider mites generally have a viscous structure of local populations, a trait that would normally hamper the spread of a fungus that is transmitted by the contact of susceptible hosts with the halo of capilliconidia surrounding an infectious host. However, if infected mites search and settle to produce capilliconidia on sites where they are surrounded by susceptible mites before becoming infectious, then the conditions for maximal transmission in a viscous host population are met. Because the ratio between spider mites and the leaf area they occupy is constant, parasite-induced host searching behaviour leads to a constant per capita transmission rate. Hence, the transmission rate only depends on the number of infectious hosts. These assumptions on parasite-induced host search and constant host density lead to a simple, analytically tractable model that can be used to estimate the maximal capacity of the fungus to decimate local populations of the cassava green mite. By estimating the parameters of this model (host density, per capita transmission rate and duration of infected and infectious state) it was shown that the fungal pathogen can reduce the population growth of M. tanajoa, but cannot drive local mite populations to extinction. Only when the initial ratio of infectious to susceptible mites exceeds unity or the effective growth rate of the mite population is sufficiently reduced by other factors than the fungus (e.g. lower food quality of the host plant, dislodgement and death by rain and wind and predation), will the fungal pathogen be capable of decimating the cassava green mite population. Under realistic field conditions, where all of these growth-reducing factors are likely to operate, there may well be room for effective control by the parasitic fungus.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Agudelo-Silva, P. 1986. A species of Triplosporium (Zygomycetes: Entomphthoraceae) infecting Mononychellus progresivus (Acari: Tetranychidae) in Venezuela. Florida Entomol. 69: 444–446.

    Google Scholar 

  2. Alvarez-Afanador, J.M. 1990. Estudos de patogenicidad de un hongo asociado con Tetranychus urticae (Koch) y Mononychellus tanajoa (Bondar), acaros plaga de la yuca Manihot esculenta Crantz. Undergraduate thesis, Universidad Nacional de Bogota, Colombia.

    Google Scholar 

  3. Anderson, R.M and May, R.M. 1981. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. London, Ser. B. 291: 451–524.

    Google Scholar 

  4. Anderson, R.M. and May, R.M. 1991. Infectious Diseases of Humans, Dynamics and Control. Oxford University Press.

  5. Bartowski, J., Odindo, M.O. and Otieno, W.A. 1988. Some fungal pathogens of the cassava green spider mite Mononychellus spp. (Tetranychidae) in Kenya. Insect Sci. Appl. 9: 457–459.

    Google Scholar 

  6. Benz, G. 1987. Epizootiology of Insect Diseases, J.R. Fuxa and Y. Tanada (eds), pp. 177–214. John Wiley & Sons, New York.

    Google Scholar 

  7. Brandenburg, R.L. and Kennedy, G.G. 1982. Relationships of Neozygites floridana (Entomophthorales: Entomophthoraceae) to two spotted spider mite (Acari: Tetranychidae) populations in field corn. J. Econ. Entomol. 75: 691–694.

    Google Scholar 

  8. Brown G.C. and Hasibuan, R. 1995. Conidial discharge and transmission efficiency of Neozygites floridana, an entomopathogenic fungus infecting two-spotted spider mites under laboratory conditions. J. Invert. Pathol. 65: 10–16.

    Article  Google Scholar 

  9. Carner, G.R. and Canerday, T.D. 1968. Field and laboratory investigations with Entomophthora fresinii, a pathogen of Tetranychus spp. J. Econ. Entomol. 61: 956–959.

    Google Scholar 

  10. Charnov, E.L. 1982. The Theory of Sex Allocation. Monographs in Population Biology 18. Princeton University Press, Princeton, NJ.

    Google Scholar 

  11. De Jong, M.C.M., Diekmann, O. and Heesterbeek, J.A.P. 1995. How does transmission of infection depend on population size? In Epidemic models: their structure and relation to data, D. Mollison (ed.). Cambridge University Press.

  12. Delalibera, I., Sosa Gomes, D.R., de Moraes, G.J., de Alencar, J.A. and Farias Araujo, W. 1992. Infection of Mononychellus tanajoa (Acari: Tetranychidae) by the fungus Neozygites sp. (Entomophthorales) in northeastern Brazil. Florida Entomol. 75: 145–147.

    Google Scholar 

  13. Diekmann, O., de Jong, M.C.M., de Koeijer, A.A. and Reijnders, P. 1994. The Force of Infection in Populations of Varying Size: A Modelling Problem. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

    Google Scholar 

  14. Ebbert, D., 1994. Virulence and local adaptation of a horizontally transmitted parasite. Science 265: 1084–1086.

    Article  Google Scholar 

  15. Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random House, New York.

    Google Scholar 

  16. Girling, G.J., Bennett, F.D. and Yaseen, M. 1977. Biological control of the green spider mite Mononychellus tanajoa (Bondar) (Acari: Tetranychidae) in Africa. In Proceedings of the Cassava Protection Workshop, T. Breckelbaun, A. Bellotti and J.C. Lozano (eds), pp. 165–170.

  17. Gutierrez, A.P., Yaninek, J.S., Wermelinger, B., Herren, H.R. and Ellis, C.K. 1988. Analysis of biological control of cassava pests in Africa. III. Cassava green mite Mononychellus tanajoa. J. Appl. Ecol. 25: 941–950.

    Article  Google Scholar 

  18. Hajek, A.E. and Legers, R.A. 1994. Interactions between fungal pathogens and insect hosts. Ann. Rev. Entomol. 39: 293–322.

    Article  Google Scholar 

  19. Herren, H.R. and Bennett, F.D. 1984. Cassava pests, their spread and control. In Proceedings of CAB's First Scientific Conference on Advancing Agricultural Production in Africa, D.L. Hawksworth (ed.), pp. 110–114. Commonwealth Agricultural Bureau.

  20. Janssen, A. and Sabelis, M.W. 1992. Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites. Exp. Appl. Acarol. 14: 233–250.

    Article  Google Scholar 

  21. Kermack, W.O. and McKendrick, A.G. 1927. A contribution to the mathematical theory of epidemics. Proc. R. Soc., Ser. A, 115: 700–721.

    Google Scholar 

  22. Lyon, W.F. 1974. A green cassava mite recently found in Africa. FAO Plant Protect. Bull. 22: 11–13.

    Google Scholar 

  23. Oduor, G.I. 1995. Abiotic factors and the epizootiology of Neozygites cf. floridana, a fungus pathogenic to the cassava green mite. PhD thesis, University of Amsterdam, Amsterdam, The Netherlands.

    Google Scholar 

  24. Oduor, G.I., de Moraes, G.J., Yaninek, J.S. and van der Geest, L.P.S. 1995a. Effect of temperature, humidity and photoperiod on mortality of Mononychellus tanajoa (Acari: Tetranychidae) infected by Neozygites cf floridana (Zygomycetes: Entomophthorales). Exp. Appl. Acarol. 19: 571–579.

    Article  Google Scholar 

  25. Oduor, G.I., Yaninek, J.S., G. J. van der Geest, L.P.S. and de Moraes, G.J. 1995b. Survival of Neozygites cf floridana (Zygomycetes: Entomophtorales) in mummified cassava green mites and the viability of its primary conidia. Exp. Appl. Acarol. 19: 479–488.

    Article  Google Scholar 

  26. Oduor, G.I., de Moraes, van der Geest, L.P.S. and Yaninek, J.S. 1996a. Production and germination of primary conidia of Neozygites floridana (Zygomycetes: Entomophtorales) under constant temperatures, humidities and photoperiods. J. Invert. Pathol. 68: 213–222.

    Article  Google Scholar 

  27. Oduor, G.I., Yaninek, J.S., van der Geest, L.P.S. and de Moraes, G.J. 1996b. Germination and viability of capilliconidia of Neozygites floridana (Zygomycetes: Entomophthorales) under constant temperature, humidity and light conditions. J. Invert. Pathol. 67: 267–278.

    Article  Google Scholar 

  28. Oduor, G.I., de Moraes, G.J., van der Geest, L.P.S. and Yaninek, J.S. 1997. The effect of pathogen dosage size on the pathogenicity of Neozygites floridana (Zygomycetes: Entomophtorales) and Mononychellus tanajoa (Acari: Tetranychidae). J. Invert. Pathol. In press.

  29. Sabelis, M.W. 1981. Biological Control of Two-spotted Spider mites using Phytoseiid Predators. Part I. Agricultural Research Reports 910, Pudoc, Wageningen.

    Google Scholar 

  30. Sabelis, M.W. 1991. Life history evolution of spider mites. In Reproduction, development and life history strategies, R. Schuster and P.W. Murphy (eds), pp. 23–50. Chapman & Hall, London.

    Google Scholar 

  31. Sabelis, M.W. 1992. Predatory arthropods. In Natural enemies: the population biology of predators, parasites and diseases, M.J. Crawley (ed.), pp. 225–264. Chapman & Hall, London.

    Google Scholar 

  32. Sabelis, M.W. and Janssen, A. 1994. Evolution of life-history patterns in the Phytoseiidae. In Mites, ecological and evolutionary analyses of life-history patterns, M.A. Houck (ed.), pp. 70–99. Chapman & Hall, New York.

    Google Scholar 

  33. Smith, J.W. and Furr, R.E. 1975. Spider mites and some natural control agents found on cotton in the delta area of Mississippi. Environ. Entomol. 4: 559–560.

    Google Scholar 

  34. Yaninek, J.S., Gutierrez, A.P. and Herren, H.R. 1989. Dynamics of Mononychellus tanajoa (Acari: Tetranychidae) in Africa: experimental evidence of temperature and host plant effects on population growth rates. Environ. Entomol. 18: 633–640.

    Google Scholar 

  35. Yaninek, J.S., Onzo, A. and Ojo, J.B. 1993. Continent-wide release of neotropical phytoseiids against the exotic cassava green mite in Africa. Exp. Appl. Acarol. 17: 145–160.

    Google Scholar 

  36. Yaninek, J.S., Saizonou, S., Onzo, A., Zannou, I. and Gnanvossou, D. 1996. Seasonal and habitat variability in the fungal pathogens, Neozygites cf. floridana and Hirsutella thompsonii, associated with cassava mites in Benin, West Africa. J. Biocontrol Sci. Technol. In press.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oduor, G., Sabelis, M., Lingeman, R. et al. Modelling Fungal (Neozygites cf. Floridana) Epizootics in Local Populations of Cassava Green Mites (Mononychellus Tanajoa). Exp Appl Acarol 21, 485–506 (1997). https://doi.org/10.1023/A:1018488130731

Download citation

  • Acari
  • Tetranychidae
  • spider mites
  • Mononychellus
  • cassava
  • Manihot
  • parasitic fungus
  • Neozygites
  • epizootics
  • transmission
  • parasite-induced behaviour
  • parasite-host interaction
  • microparasite-host model.