Advertisement

Integrated Pest Management Reviews

, Volume 2, Issue 2, pp 51–59 | Cite as

Biological control of pigweeds (Amaranthus retroflexus, L. A. Powellii, S. Watson and A. bouchonii Thell.) with phytophagous insects, fungal pathogens and crop management

  • H.M. BURKI
  • D. SCHROEDER
  • J. LAWRIE
  • L. CAGAN
  • M. VRABLOVA
  • M. EL AYDAM
  • F. SZENTKIRALYI
  • R. GHORBANI
  • B. JUTTERSONKE
  • H.U. AMMON
Article

Abstract

Pigweeds (Amaranthus spp.) are of economic importance worldwide. In Europe, Amaranthus retroflexus is one of the ten weed species of greatest economic importance. It is a serious problem weed in several field crops (e.g. maize), as well as in vegetables, orchards and grape vines. It is an annual spreading by seeds which have a long viabilityand are dispersed principally by wind and water, but also by machinery. There is great variability in seed germination which renders control with post-emergence herbicides difficult. In addition, triazine herbicide-resistant populations occur in ten European countries. The aim of this subproject of COST action 816 is to investigate the possibilities of classical and inundative biological control of Amaranthus spp., to characterize potentialbiological control agents and to develop methods for their integration with current phytosanitary measures in the target crops. The project was initiated with an extended literaturesurvey followed by field surveys for insects and pathogens associated with Amaranthus spp. in several European countries. Promising isolates of fungal pathogens have been tested ondetached leaves and whole plants, and initial studies on the application of pathogens causing damping off in seedlings have been made. Further, the variability of different provenances ofAmaranthus spp. in response to fungal attack has been investigated

Biological control insects pathogens germination taxonomy genetic variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammon, H.U. (1994) From weed control to regulation of green cover crops in maize. Rev. Suisse Agricult 26,28–38.Google Scholar
  2. Ammon, H.U. and Bohren, C. (1990) Breitband-Frässaat von Mais in Wiesen-und Gründüngungsbeständen mit Mulch-Schnitt zwischen den Reihen. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderh. XII,229–35.Google Scholar
  3. Ammon, H.U., Dubois, D. and Bohren, C. (1996) Späte Unkrautbekämpfung in Rüben mit Glufosinate–ein Anbauverfahren zur Nützlingsförderung. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz Sonderh. XV,593–8.Google Scholar
  4. Aufhammer, W., Lee, J.H., Kübler, E., Kuhn, M. and Wagner, S. (1995) Production and utilisation of the pseudocereals buck-wheat (Fagopyron esculentumMoench), quinoa (Chenopodium quinoaWilld.) and amarant (Amaranthusspp. L.) as grain crops. Die Bodenkultur 46,125–40.Google Scholar
  5. Baloch, G.M., Khan, A.G. and Zafar, T. (1977) Investigations on the Insect Enemies ofAbutilon, Amaranthus, Rumex andSorghum in Pakistan. Report of the Commonwealth Institute of Biological Control, Pakistan Station, 1975–1976.Google Scholar
  6. Balsbaugh, E.U., Jr, Frye, R.D., Scholl, C.G. and Anderson, A.W. (1981) Insects for weed control: status in North Dakota. North Dakota Farm Research 39,3–7.Google Scholar
  7. Barralis, G. and Gasquez, J. (1987) Investigations on herbicide resistant weeds. Newsletter of the European Weed Research Society 38,5–10.Google Scholar
  8. Baskin, I.J. and Baskin, C.C. (1977) Role of temperature in the germination ecology of three summer annual weeds. Oecologia 30,377–82.Google Scholar
  9. Bendixen, L.E., Kim, K.U., Kozak, C.M. and Horn, D.J. (1981) An Annotated Bibliography of Weeds as Reservoirs For Organisms Affecting Crops. IIa. Arthropods. Wooster, OH: Research Bulletin 1125, Ohio Agricultural Research and Development Center.Google Scholar
  10. Brandenburger, W. (1985) Parasitische Pilze an Gefässpflanzen in Europa, pp. 124–25. Stuttgart and New York: Gustav Fischer.Google Scholar
  11. Brust, G.E. (1994) Seed-predators reduce broadleaf weed growth and competitive ability. Agricult Ecosyst. Environ. 48,27–34.Google Scholar
  12. Cane, J.H., Buchmann, S.L. and LaBerge, W.E. (1992) The solitary bee Melissodes thelypodiiCockerell (Hymenoptera: Anthophoridae) collects pollen from wind-pollinated Amaranthus palmeri Watson. Pan-Pacific Entomologist 68,97–9.Google Scholar
  13. Charudattan, R. (1994) Status report of the University of Florida, Plant Pathology Department, Gainesville, FL, USA. International Bioherbicide Group IBG News 3,8–9.Google Scholar
  14. Crawley, M.J. (1987) In A.J. Gray, M.J. Crawley and P.J. Edwards (eds) Colonization succession and stabilitypp. 429–53. Oxford: Blackwell Scientific Publications.Google Scholar
  15. Farr, D.F., Bills, G.F., Chamuris, G.P. and Rossman, A.Y. (1989) Fungi on Plants and Plant Products in the United States. St Paul, MN: APS Press.Google Scholar
  16. Frost, R.A. and Cavers, P.B. (1975) The ecology of pigweed (Amaranthus) in Ontario. I. Interspecific and intraspecific variation in seed germination among local collections of A. powelliand A. retroflexus. Canadian Journal of Botany 53, 1276–84.Google Scholar
  17. Garman, H. (1892) The pigweed flea beetle. Second. Ann. Rep. Kentucky Agr. Exp. Sta. 18 89,27–30.Google Scholar
  18. Gut, D. and Mayor, J.P. (1993) Herbizidresistente Unkräuter in Rebbergen (I). Landw. Schweiz 5,6.Google Scholar
  19. Hanf, M. (1984) Ackerunkraüter Europas mit ihren Keimlingen, pp. 166–70. Ludwigshafen: BASF AG.Google Scholar
  20. Harris, P. (1971) Current approaches to biological control of weeds. Technical Communication, Commonwealth Institute of Biological Control 4,67–76.Google Scholar
  21. Howell, C.R. and Stipanovic, R.D. (1984) Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens. Phytopathology 74,1346–9.Google Scholar
  22. Hügin, G. (1987) Einige Bemerkungen zu wenig bekannten Amaranthus-Sippen (Amaranthaceae) Mitteleuropas. Willdenowia 16,453–78.Google Scholar
  23. Jüttersonke, B. (1996) Investigations into the reaction of European provenances of Amaranthus retroflexusL. to environmental factors and fungous infection. Zeitschrift für Pflanzenkrankheiten Sonderh. XV,107–12.Google Scholar
  24. Katar’yan, B.T. (1975) The search for bacterial cultures with herbicidal activity. Doklady Akademii Nauk Armyanskoi SSR 61,110–12.Google Scholar
  25. Kolaib, M.O., Younes, M.F.W and Darwish, E.T.E. (1986) Hypolixus nubilosusas a factor in biological control of Amaranthusweeds in Egypt. Annals of Agricultural Science(Cairo), 31,767–76.Google Scholar
  26. Komen, J. (1992) Grains for the tropical regions. Biotechnology and Development Monitor 10,3–5.Google Scholar
  27. Manojlovic, B. (1984) Effektivnost parazita u redukcijii populacije kukuruznog plamenca (Ostrinia nubilalisHbn., Lepidoptera, Pyralidae) na raznim biljkama hraniteljkama. Zastita Bilja 35, 333–46.Google Scholar
  28. Melchior, H. (1964) Engler’s Syllabus der Pflanzenfamilien. 2. Band. Berlin: Gebrüder Bornträger.Google Scholar
  29. Mendoza, G.L. and Rodriguez, M.M. (1990) Aislamiento, identification y patogenicidad de bacterias en quelite Amaranthus hybridusL. y su posibilidad en el control biologico. Revista Chapingo 15,66–9.Google Scholar
  30. Mikulka, J. and Chodova, D. (1988) Problematica rezistence plevelu vivu herbicidum. Agrochemica 28,207–12.Google Scholar
  31. Mintz, A.S. and Weidemann, G.J. (1992) Evaluation of Aposphaeria amaranthias a potential bioherbicide for Amaranthus. In Biological Control of Weeds, Eighth International Symposium, p. 68.Google Scholar
  32. Mintz, A.S., Heiny, D.K. and Weidemann, G.J. (1992) Factors influencing the biocontrol of tumble pigweed (Amaranthus albus) with Aposphaeria amaranthi. Plant Disease 76, 267–9.Google Scholar
  33. Mulder, T.A. and Doll, J.D. (1993) Integrating reduced herbicide use with mechanical weeding in corn (Zea mays). Weed Technology 7,382–9.Google Scholar
  34. Napompeth, B. (1982) Biological research and development in Thailand. In Proceedings of the International Conference on Plant Protection Tropics, pp. 301–3.Google Scholar
  35. Pearcy, R.W. and Ehleringer, J. (1984) Comparative ecophysiology of C3 and C4 plants. Plant Cell Environment 7,1–13.Google Scholar
  36. Pinch, C. (1996) Synergistic interactions between potential microbial herbicides and chemical herbicides. MSc Thesis, University of Bath.Google Scholar
  37. Schroeder, D. and Müller-Schärer, H. (1995) Biological control of weeds and its prospectives in Europe. Med. Fac. Landbouww. Univ. Gent. 60,117–23.Google Scholar
  38. Schroeder, D., Müller-Schärer, H. and Stinson, C.S.A. (1993) A European weed survey in 10 major crop systems to identify targets for biological control. Weed Research 33,449–58.Google Scholar
  39. Schuester, M. (1987) Blister beetle in Paraguay–a potential biological control agent. Tropical Pest Management 33,241.Google Scholar
  40. Senesac, A. and Minotti, P.L. (1982) The ecology and distribution of pigweed species in New York State. Proceedings of the Northeastern Weed Science Society 36,94–5.Google Scholar
  41. Shepard, A. (1995) Studies of Alternariasp.–a potential microbial herbicide for the annual weed Amaranthus. MSc thesis, University of Bath.Google Scholar
  42. Sovljanski, B., Arsenovic, M., Klokocar-Smit, Z., Janjic, V. and Ostojic, Z. (1989) Herbicide-resistant weeds and search for biocontrol agents in Yugoslavia. Importance and perspectives on herbicide-resistant weeds. In R. Cavalloro and G. Noye (eds) Proceedings of a meeting of the EC Experts’ Group, pp. 153–60. Luxembourg: Office for Official Publications of the European Community.Google Scholar
  43. Spencer, K.A. and Havranek, D. (1989) A new species of Agromyzidae (Diptera) from Venezuela. Florida Entomologist 72,441–4.Google Scholar
  44. Stallknecht, G.F. and Schulz-Schaeffer, J.R. (1993) Amaranth rediscovered. In J. Janick and J.E. Simon (eds) New crops, pp. 211–18. New York: John Wiley & Sons, Inc.Google Scholar
  45. Stegmaier, C.E. (1950) Insects associated with the rough pigweed, Amaranthus retroflexusL. (Amaranthaceae). Unpublished thesis, Kansas State College of Agriculture and Applied Science.Google Scholar
  46. Tevis, L. (1958) Interrelations between the harvester ant Veromessor pergandei(Mayr) and some desert ephemerals. Ecology 39, 695–704.Google Scholar
  47. Tisler, A.M. (1990) Feeding in the pigweed flea beetle. Disonycha glabrataFab. (Coleoptera: Chrysomelidae), on Amaranthus retroflexus. Virginia Journal of Science 41,243–5.Google Scholar
  48. Tutin T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Valentine, D.H., Walters, S.M. and Webb, D.A. (1993) Flora Europaea. Vol. 1. Psilotaceae to Plantanaceae, pp. 130–2. Cambridge: Cambridge University Press.Google Scholar
  49. Vogt, G.B. and Cordo, H.A. (1976) Recent South American field studies of prospective biocontrol agents of weeds. In Proceedings of the Res. Planning Conference on Aquatic Plant Control Program, Charleston, pp. 36–55.Google Scholar
  50. Wapshere, A.J. (1974) Host specificity of phytophagous organisms and the evolutionary centres of plant genera and subgenera. Entomophaga 19,301–9.Google Scholar
  51. Waterhouse, D.F. (1994) Biological Control of Weeds: Southeast Asian Prospects, pp. 18–24. Canberra: ACIAR Monograph No. 26.Google Scholar
  52. Weaver, S.E. and McWilliams, E.L. (1980) The biology of Canadian weeds. 44. Amaranthus retroflexusL., A. powelliiS. Wats. and A. hybridusL. Canadian Journal of Plant Science 60,1215–34.Google Scholar
  53. Weissmann, R.M. (1995) Variability of Alternaria, a potential mycoherbicide for Amaranthus. MSc thesis, University of Bath.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • H.M. BURKI
    • 1
  • D. SCHROEDER
    • 1
  • J. LAWRIE
    • 2
  • L. CAGAN
    • 3
  • M. VRABLOVA
    • 3
  • M. EL AYDAM
    • 4
  • F. SZENTKIRALYI
    • 5
  • R. GHORBANI
    • 6
  • B. JUTTERSONKE
    • 7
  • H.U. AMMON
    • 8
  1. 1.International Institute of Biological ControlDelemontSwitzerland
  2. 2.IACR-Long Ashton Research StationUniversity of BristolLong Ashton BristolUK
  3. 3.Department of Plant ProtectionUniversity of AgricultureNitraSlovakia
  4. 4.Faculte des SciencesUniversite Libre de BruxellesBruxellesBelgium
  5. 5.Plant Protection Research InstituteHASBudapestHungary
  6. 6.University of AberdeenUK
  7. 7.Institute for Integrated Plant ProtectionFederal Biological Research Centre for Agriculture and Forestry (BBA)KleinmachnowGermany
  8. 8.Institute of Plant SciencesSwiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations