Skip to main content
Log in

Effect of electrolyte composition on the dynamics of hydrogen gas bubble evolution at copper microelectrodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The dynamics of hydrogen gas bubble evolution at copper microelectrodes in H2SO4 and HCl solutions of various compositions have been studied by means of galvanostatic polarization experiments and simultaneous video taping. As long as the solution contains acid only, gas evolution is dominated by the growth of a single bubble at the electrode at any one time. The transients in H2SO4 solutions exhibit regular sustained relaxation oscillations that can be distinctly related to events occurring at the cathode. The electrode response in HCl solutions is somewhat noisier and shows much larger cathodic polarization and oscillation frequency and amplitude, presumably due to an interaction between Cl– and the copper surface. Additions of Na2SO4 and NaCl to these solutions promote the nucleation and growth of numerous small bubbles at any one time and the diminishing of the oscillations of the electrode potential. The addition of thiourea to 2.0 m H2SO4 does not destroy the single bubble growth characteristic of acid-only solutions, but increases the cathodic overpotential at all organic levels with a maximum occurring at about 0.13 mm thiourea. Oscillation frequency and amplitude, and bubble departure diameter all show a similar dependence on thiourea concentration to that of overpotential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lord Rayleigh, Philos. Mag. 34 (1917) 94.

    Google Scholar 

  2. B. Kubanov and A. Frumkin, Z. Phys. Chem. 165A (1933) 433.

    Google Scholar 

  3. L. E. Scriven, Chem. Eng. Sci. 10 (1959) 1.

    Google Scholar 

  4. D. E. Westerheide and J. H. Westwater, AIChE J. 7 (1961) 351.

    Google Scholar 

  5. S. Shibata, Bull. Chem. Soc. Japan 36 (1963) 53.

    Google Scholar 

  6. J. P. Glas and J. W. Westwater, Int. J. Heat Mass Transfer 7 (1964) 1427.

    Google Scholar 

  7. R. Lessard and S. A. Zieminski, Ind. Eng. Chem. Fundam. 10 (1971) 260.

    Google Scholar 

  8. M. G. Fouad and G. H. Sedahamed, Electrochim. Acta 18 (1973) 55.

    Google Scholar 

  9. L. Janssen, ibid. 23 (1978) 81.

    Google Scholar 

  10. H. Vogt, ibid. 28 (1981) 1311.

    Google Scholar 

  11. H. Vogt, in `Comprehensive Treatise of Electrochemistry', vol. 6, Plenum Press, New York (1983), p. 445

    Google Scholar 

  12. P. J. Sides and C. W. Tobias, J. Electrochem. Soc. 132 (1985) 583.

    Google Scholar 

  13. P. J. Sides, in `Modern Aspects of Electrochemistry', vol. 18, Plenum Press, New York (1986) p. 303.

    Google Scholar 

  14. J. Dukovic and C. W. Tobias, J. Electrochem. Soc. 134 (1987) 331.

    Google Scholar 

  15. J. A. Leistra and P. J. Sides, ibid. 134 (1987) 2442.

    Google Scholar 

  16. D. Landolt, R. Acosta, R. H. Muller and C. W. Tobias, ibid. 117 (1970) 839.

    Google Scholar 

  17. L. Janssen and J. Hoogland, Electrochim. Acta 18 (1973) 543.

    Google Scholar 

  18. C. Gabrielli, F. Huet and M. Keddam, J. Appl. Electrochem. 15 (1985) 503.

    Google Scholar 

  19. C. Gabrielli, F. Huet, M. Keddam, A. Macias and A. Sahar, ibid. 19 (1989) 618.

    Google Scholar 

  20. C. Gabrielli, F. Huet, M. Keddam and A. Sahar, ibid. 19 (1989) 683.

    Google Scholar 

  21. N. P. Brandon and G. H. Kelsall, ibid. 15 (1985) 476.

    Google Scholar 

  22. R. Lessard and S. A. Zieminski, Ind. Eng. Chem. Fundam. 10 (1971) 260–8.

    Google Scholar 

  23. M. J. Prince and H. W. Blanch, AIChE J. 36 (1990) 1425.

    Google Scholar 

  24. V. S. J. Craig, B. W. Ninham and R. M. Pashley, J. Phys. Chem. 97 (1993) 10192.

    Google Scholar 

  25. Z. A. Jofa, Proceedings of the 2nd European Symposiom on Corrosion Inhibition, Ferrara (1965), p. 100.

  26. J. Crousier and I. Bimaghra, J. Appl. Electrochem. 23 (1993) 780.

    Google Scholar 

  27. M. D. Pritzker, J. Electroanal. Chem. 373 (1994) 39.

    Google Scholar 

  28. R. Agrawal and T. K. G. Namboodhiri, Corros. Sci. 30 (1990) 50.

    Google Scholar 

  29. D. R. Turner and G. R. Johnson, J. Electrochem. Soc. 109 (1962) 803.

    Google Scholar 

  30. L. Cavallaro, L. Felloni, G. Trananelli and F. Pulidori, Electrochim. Acta 8 (1963) 523.

    Google Scholar 

  31. Q. Su, Y. Umetsu and K. Tozawa, J. Mining & Mater. Process. Institute of Japan 105 (1989) 959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristof , P., Pritzker , M. Effect of electrolyte composition on the dynamics of hydrogen gas bubble evolution at copper microelectrodes. Journal of Applied Electrochemistry 27, 255–265 (1997). https://doi.org/10.1023/A:1018472511901

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018472511901

Keywords

Navigation