Skip to main content
Log in

Effect of bare metal surface on the dissolution in aqueous citrate solutions of magnetite films on carbon steel

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The potential–time dependence of magnetite under varying conditions of pH and Fe2 concentration and of magnetite layers on carbon steel with initially exposed small bare metal areas have been studied. The experiments simulate the case of magnetite scales partially removed from surfaces in the course of chemical cleaning when coupling conditions occur with area ratios variable with time. The interpretation is based on an equivalent electric circuit composed of internal current generators of faradaic origin and capacitors simulating the electric double layer at the metal/solution and oxide/solution interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Baumgartner, M. A. Blesa, H. A. Marinovich and A. J. G. Maroto, Inorg. Chem. 22 (1983) 2226.

    Google Scholar 

  2. W. Bell, in ASME Publication, Nov.(Dec. (1960), paper 60-WA-257.

  3. P. Berge, C. Ribon and P. Saint-Paul, The International 7th Corrosion Forum for the Protection and Performance of Materials, Palmer House, Chicago (1974).

    Google Scholar 

  4. D. M. Blacke, J. Engle and C. A. Lesinski, in Proceeding of the International Water Conference, Pittsburg, (1962), p. 135.

  5. W. J. Blume, Mater. Performance 3 (1977) 15.

    Google Scholar 

  6. J. Brown, D. G. Kingerley, V. Ashworth and M. J. Willett, Chemistry and Industry, Sept. (1969) 35.

  7. J. Brown, D. G. Kingerley and M. J. Louster, Br. Corros. J. 13 (1978) 93.

    Google Scholar 

  8. S. Brunet and G. Turluer, in Proceedings of the 5th European Symposium on Corrosion Inhibitors, Italy, Ferrara, Sept. (1980) p. 513.

  9. S. Brunet, G. Pinard-Legry and G. Turluer, in Proceedings of the 8th International Congress on Metallic Corrosion, Germany, Frankfurt am Main, Dechema (1981) p. 1634.

  10. K. E. Buob, A. F. Beck and M. Cohen, J. Electrochem. Soc. 105 (1958) 74.

    Google Scholar 

  11. J. W. Diggle, in `Dissolution of Oxide Phases from Oxides and Oxides Films', vol. 2 (edited by J. W. Diggle) Marcel Dekker, New York (1973) p. 281.

    Google Scholar 

  12. H. J. Engell, Z. Phys. Chem. 7 (1956) 158.

    Google Scholar 

  13. M. Fields, Proceedings of the 2nd International Conference on Metal Corrosion, NACE, Houston, Texas (1963).

  14. W. W. Frenier, Corrosion 40 (1984) 176.

    Google Scholar 

  15. W. W. Frenier and F. B. Growcock, ibid. 40 (1984) 663.

    Google Scholar 

  16. I. G. Gorichev, Werkst. Korros. 30 (1979) 426.

    Google Scholar 

  17. I. G. Goricev and N. A. Kapriyanov, J. Appl. Chem. USSR 52 (1979) 473.

    Google Scholar 

  18. I. G. Gorichev et al., Russ. J. Phys. Chem. (trans. from Zh. Fiz. Khim.) 50 (1976) 1853; ibid. 52 (1978) 681; ibid. 53 (1979) 1293; ibid. 54 (1980) 774.

    Google Scholar 

  19. S. Haruyama and K. Masamura, Corros. Sci. 17 (1978) 263.

    Google Scholar 

  20. A. Hickling and D.J.G. Ives, Electrochim. Acta 26 (1975) 63.

    Google Scholar 

  21. J. Kertesz and I. H. Plonski, Patent RO-OSIM, 149 080 (1992) Romania.

  22. W. S. Leedy, in EPRI, ASME, OSU, Seminar on Decontamination of Nuclear Plants (1975).

  23. W. Lorenz and K. Heusler, in `Corrosion Mechanisms', (edited by F. Mansfeld) Marcel Dekker, New York (1987) p. 4.

    Google Scholar 

  24. C. M. Loucks, `Power', McGraw-Hill, New York (1961).

    Google Scholar 

  25. D. S. Mancey, D. W. Shoesmith, J. Lipkowski, A. C. Mc-Bride and J. Noël, J. Electrochem. Soc. 140 (1993) 637.

    Google Scholar 

  26. D. S. Mancey and A. C. McBride, Report IAEA–TEC-DOC-716, ‘Decontamination and decommissioning of nuclear facilities’, Aug. (1993) pp. 13–33.

  27. E. B. Morris, J. Engineer for Power, Oct. (1961) 367.

  28. K. Ogura and K. Sato, Electrochim. Acta 25 (1980) 857, 1227.

    Google Scholar 

  29. K. Ogura and T. Ohama, Corrosion 38 (1982) 403.

    Google Scholar 

  30. H. G. Oswin and M. Cohen, J. Electrochem. Soc. 104 (1957) 9.

    Google Scholar 

  31. M. Pavarotti and R. Rizzi, CISE-NT Italy, Report (1982) 82.061.

  32. M. Pavarotti, R. Rizzi and C. Ronchetti, CISE-NT Italy, Report (1982) 1797; Conference on Decontamination of Nuclear Facilities, 19-22 Sept. (1982) Niagara Falls, NY.

  33. I. H. Plonski, M. Toader, F. Berevoianu and A. Cristescu, Patent RO-OSIM no. 97 049 (1988).

  34. I. H. Plonski, Corrosion 46 (1990) 581.

    Google Scholar 

  35. Idem, ibid. 47 (1991) 840.

  36. Idem, St. Cerc. Fiz. 43 (1991) 233, 395.

    Google Scholar 

  37. Idem, Ber. Bunsenges. Phys. Chem. 97 (1993) 8.

    Google Scholar 

  38. Idem, in Proceedings of the International Conference on Energy, Environment and Electrochemistry, 10-12 Feb. (1993), Karaikudi, India, p. A–105, paper no. 4-49.

  39. Idem, J. Radioanal. & Nucl. Chem. 178 (1994), 359 185 (1994) 251.

    Google Scholar 

  40. Idem, J. Mater. Sci. Forum 185 (1995) 649.

    Google Scholar 

  41. Idem, Effect of Surface Structure and Adsorption Phenomena on the Active Dissolution of Iron in Acid Media, in `Modern Aspects of Electrochemistry', no. 29 (edited by J. O'M. Bockris, B. E. Conway and R. E. White), Plenum Press, New York (1996) pp. 203–319.

  42. Idem, Int. J. Hydrogen Energy 21 (1996) 837.

    Google Scholar 

  43. P. J. Pocock and W. S. Leedy, in Proceedings of the 32nd International Water Conf. of the Engineers Soc. of Western Pennsylvania, Pittburg, 1971.

  44. M. Pourbaix, `Atlas d'Equilibres Electrochimiques', Paris, Gauthier-Vilars et Cie (1963) p. 307.

    Google Scholar 

  45. M. J. Pryor and U. R. Evans, J. Chem. Soc. (1950) 1259, 1266.

    Google Scholar 

  46. M. J. Pryor, J. Chem. Soc. (1950) 127.

  47. R. Rizzi, CISE-NT Italy, Report (1978).

  48. T. Sava and Y. Furutany, INIS File Research, March (1989) 51.

  49. M. G. Segal and T. Swan, in `Water Chemistry 3', BNES, London, (1983) p.187.

    Google Scholar 

  50. D. W. Shoesmith, T. E. Rummery, Woon Lee and D. G. Owen, Power Ind. Res. 1 (1981) 43.

    Google Scholar 

  51. D. W. Shoesmith, Woon Lee and D. G. Owen, ibid. 1 (1981) 253.

    Google Scholar 

  52. C. D. Stockbridge, P. Sewell and M. Cohen, J. Electrochem. Soc. 108 (1961) 928; ibid. 108 (1961) 933.

    Google Scholar 

  53. G. Trabanelli, F. Zucchi and A. Frignani, Werk. Korros. 30 (1979) 426.

    Google Scholar 

  54. W. Valverde and C. Wagner, Ber. Bunsen. Ges. 80 (1976) 330.

    Google Scholar 

  55. W. Valverde, Ber. Bunsen. Ges. 80 (1976) 333.

    Google Scholar 

  56. D.A. Vermilyea, J. Electrochem. Soc. 113 (1966) 1067.

    Google Scholar 

  57. K.R. Walston, in Corrosion'79 NACE, Atlanta (1979) paper 5.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PLONSKI, I.H. Effect of bare metal surface on the dissolution in aqueous citrate solutions of magnetite films on carbon steel. Journal of Applied Electrochemistry 27, 1184–1192 (1997). https://doi.org/10.1023/A:1018471617720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018471617720

Keywords

Navigation