Skip to main content
Log in

Electrowinning magnesium from its oxide in a melt containing neodymium chloride

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A new process for the electrolytic production of magnesium from its oxide is described, based on the reaction MgO + NdCl3→MgCl2 + NdOCl. This is followed by electrolysis of the resulting MgCl2/NdCl3/NdOCl melt using a carbon anode, the proposed electrolysis reaction being 2MgCl2+C+ 2NdOCl→2Mg + CO2 + 2NdCl3. XRD studies confirm the formation of NdOCl when MgO is fused with NdCl3. Electrolysis of the melt, using a molten tin cathode and a graphite anode, produced a gas containing chlorine, suggesting some direct electrolysis of chlorides. At 700°C only chlorine was found, but at 750°C and above chlorine and carbon dioxide were evolved, the chlorine:carbon dioxide ratio decreasing markedly as the current density was decreased from 3600 to 890Am−2. This was consistent with the measured cell voltages, which at 750°C and above fell below the calculated decomposition voltage of MgCl2 at current densities of less than 1000 A m−2. There is extensive co-deposition of neodymium with the magnesium with the molten tin cathode, but when magnesium metal was equilibrated with the MgCl2/NdCl3/NdOCl melt only 0.5wt% of neodymium entered the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Oye, Proceedings of the Elliott Symposium on Chemical Processes in Metallurgy (edited by P J. Koros and G. R. St. Pierre) Cambridge, MA, 1990 Iron and Steel Society, Warrendale, PA, (1991), p. 33.

    Google Scholar 

  2. N. Hoy-Petersen, T. Aune, T. Vralstadt, K. Andreassen, D. Oymo, T. Haugerod and O. Skane, `Ullman's Encyclopedia of Industrial Chemistry,' `Magnesium' (s.v.) 5th. edn, vol. A 15, Weinheim, Germany, 1990, pp. 559–80.

    Google Scholar 

  3. M. C. Flemings, G. B. Kenney, D. R. Sadoway, J. P. Clark and J. Szekely, `Assessment of the Magnesium Primary Production Technology', US Department of Energy, Final Report EX-76-A-01-2295 (1981), 180 pp.

  4. R. R. Lloyd, C. K. Stoddard, K. L. Mattingly, E. T. Leidligh and R. G. Knickerbocker, Amer. Inst. Min. Met. Eng., Tech. Publ. No. 1848 (1945).

  5. B. Cartwright, L. R. Michels and S. F. Ravitz, US Bureau of Mines RI 3805 (1945), 19 pp.

  6. J. C. Withers and R. O. Loutfy, Light Metals, 2 (1986) 1013.

    Google Scholar 

  7. R. A. Sharma, US Patent 5 279 716 (1994).

  8. E. W. Dewing, Proceedings of the Savard/Lee International Symposium on Bath Smelting (edited by J. K. Brimacombe et al.), The Minerals Metals and Materials Society, Warrendale, PA (1992), p. 341.

    Google Scholar 

  9. P. G. Permyakov, B. G. Korshunov and V. A. Krokhin, Russ. J. Inorg. Chem. 20 (1975) 1096.

    Google Scholar 

  10. G. Kipouros, H. Mediaas, J. E. Vindstad, T. Ostvold and O. Tkatcheva, in `Light Metals 1996', Anaheim, CA (edited by. W. Hale), Minerals Metals and Materials Society, Warrendale, PA (1996), p. 1123.

    Google Scholar 

  11. P. G. Permyakov, B. G. Korshunov and V. A. Krokhin, Sov. Non-Ferrous Metals Res. 3 (1975) 110.

    Google Scholar 

  12. G. J. Kipouros, and D. R. Sadoway, Adv. Molten Salt Chem. 6 (1987) 127.

    Google Scholar 

  13. G. J. Kipouros and R. A. Sharma, `Rare Earths: Resources, Science, Technology and Applications,' (edited by R. G. Batister and N. Jackson) The Minerals, Metals and Materials Society, Warrendale, PA (1991), p. 43.

    Google Scholar 

  14. I. M. Kolthoff and P. J. Elving, `Treatise on Analytical Chemistry. Pt. II. Analytical Chemistry of the Elements', vol. 8, InterScience, London (1963), p. 56.

    Google Scholar 

  15. M. Guden and I. Karakaya, J. Appl. Electrochem. 24 (1994) 791.

    Google Scholar 

  16. A. I. Vogel, `A Textbook of Quantitative Inorganic Analysis,' 3rd edn, Longmans London (1961), p. 249.

  17. R. A. Sharma, J. Chem. Thermodyn. 2 (1970) 373.

    Google Scholar 

  18. I. Barin, O. Knacke and O. Kubaschewski, `Thermochemical Properties Inorganic Substances, Supplement', Springer Verlag, Berlin (1977), pp. 1–961.

    Google Scholar 

  19. L. M. Ferris, J. C. Mailen and F. J. Smith, J. Less-Common Metals 25 (1971) 83.

    Google Scholar 

  20. A. P. Bayanov, Russ. J. Phys. Chem. 45 (1971) 1077.

    Google Scholar 

  21. Minshou Zhao, Qijin Zhao and Dingxiang Tang, Zhongguo Xitu Xuebao 1 (1983) 41.

    Google Scholar 

  22. F. Trombe and F. Mahn, Ann. de Chim. 19(345) 1944.

  23. F. Trombe and P. Caro, Compte. Rend. 254 (1962) 474.

    Google Scholar 

  24. F. N. T'en and I. S. Morozov, Russ. J. Inorg. Chem. 14 (1969) 1179.

    Google Scholar 

  25. J. Mochinaga, Y. Iwadate and K. Igarashi, J. Electrochem. Soc. 138 (1991) 3588.

    Google Scholar 

  26. G. M. Photiadis, G. A. Voyiatzis and G. N. Papatheodorou, Molten Salt Forum 1-2 (1993/94) 183.

    Google Scholar 

  27. G. J. Kipouros and R. A. Sharma, `Light Metals 1994' San Francisco, CA (edited by U. Mannweiler), The Minerals Metals and Materials Society, Warrendale, PA (1994), p. 1163.

    Google Scholar 

  28. E. Dewing, Can. Metall. Q. 30 (1991) 153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

CATHRO , K.J., DEUTSCHER , R.L. & SHARMA , R.A. Electrowinning magnesium from its oxide in a melt containing neodymium chloride. Journal of Applied Electrochemistry 27, 404–413 (1997). https://doi.org/10.1023/A:1018457503240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018457503240

Keywords

Navigation