Evolutionary Ecology

, Volume 11, Issue 2, pp 127–143 | Cite as

The ‘paradox’ of polyembryony: A review of the cases and a hypothesis for its evolution

  • SEAN F. Craig
  • LAWRENCE B. Slobodkin
  • GREGORY A. Wray
  • CHRISTIANE H. Biermann


Animal polyembryony appears to be paradoxical because it clones an unproven genotype at the expense of genetic diversity in a clutch. However, it is employed by at least 18 taxa in six phyla (excluding instances of occasional twinning). Most polyembryony occurs in parasitic stages or in other environments whose quality is not predictable by the mother; in some instances, it compensates for a constraint on zygote number. We predict that polyembryony is likely to evolve when the offspring has more information regarding optimal clutch size than the parents.

asexual reproduction clonal reproduction clutch size environmental predictability life history evolution parasites parasitoids polyembryony 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arillo, A., Bavestrello, G. and Boero, F. (1989) Circannual cycle and oxygen consumption in Eudendrium glomeratum (Cnidaria, Anthomedusae): Studies on a shallow water population. Marine Ecol. 10, 289–301.Google Scholar
  2. Baer, J.G. and Joyeux, C. (1961) Classe des Trématodes. In Traité de Zoologie, IV,I (P. Grassé, ed.), pp. 561–692. Masson, Paris.Google Scholar
  3. Baer, J.G. and Euzet, L. (1961) Classe des Monogènes. In Traité de Zoologie, IV,I (P. Grassé, ed.), pp. 241–325. Masson, Paris.Google Scholar
  4. Bell, G. (1982) The Masterpiece of Nature. University of California Press, Berkeley, CA.Google Scholar
  5. Benazzi, M. and Benazzi Lentati, G. (1993) Platyhelmithes — Turbellaria. In Reproductive Biology of Invertebrates K.G. Adiyodi and R.G. Adiyodi, eds). Vol. VI, Part A, Asexual Propagation and Reproductive Strategies, pp. 107–141. John Wiley, Chichester.Google Scholar
  6. Berland, L. (1951) Super-ordre des Hyménoptéroïdes: Reproduction. In Traité de Zoologie, X,I (P. Grassé, ed.), pp. 821–843. Masson, Paris.Google Scholar
  7. Berrill, N.J. (1949) Developmental analysis of Scyphomedusae. Biol. Rev. 24, 393–410.Google Scholar
  8. Berrill, N.J. (1952) Regeneration and budding in worms. Biol. Rev. 27, 401–438.Google Scholar
  9. Bigelow, H.B. (1909) The Medusae. Mem. Mus. Comp. Zool. 37, 9–245.Google Scholar
  10. Boero, F. (1994) Bright young people, biodiversity and species lists. Trends Ecol. Evol. 9, 399.Google Scholar
  11. Boero, F., Bouillon, J. and Piraino, S. (1992) On the origins and evolution of hydromedusan life cycles (Cnidaria, Hydrozoa). In Sex Origin and Evolution (R. Dallai, ed.), pp. 59–68. Selected Symposia and Monographs U.Z.I. No. 6. Mucchi, Modena.Google Scholar
  12. Borg, F. (1926) Studies on recent Cyclostomatous Bryozoa. Zool. Bidrag. Uppsala 10, 181–507.Google Scholar
  13. Borg, F. (1933) A revision of the recent Heteroporidae (Bryozoa). Zool. Bidrag. Uppsala 14, 254–394.Google Scholar
  14. Bosch, I., Rivkin, R.B. and Alexander, S.P. (1989) Asexual reproduction by oceanic planktotrophic echinoderm larvae. Nature 337, 169–170.Google Scholar
  15. Bouillon, J. (1985) Essai de classification des Hydropolyps-Hydromeduses (Hydrozoa-Cnidaria). Indo-Malayan Zool. 1, 29–243.Google Scholar
  16. Brien, P. (1960) Classe des Bryozoaires. In Traité de Zoologie, V,II (P. Grassé, ed.), pp. 1053–1379. Masson, Paris.Google Scholar
  17. Buchanan, G.D. (1957) Variation in litter size of nine-banded armadillos. J. Mamm. 38, 529.Google Scholar
  18. Bulmer, M.G. (1970) The Biology of Twinning in Man. Clarendon Press, Oxford.Google Scholar
  19. Calvet, L. (1900) Contributions á l'histoire naturelle des Bryozoaires ectoproctes marins. Trav. Inst. Zool. Univ. Montpellier 8, 1–488.Google Scholar
  20. Charnov, E.L., Downhower, J.F. and Brown, L.P. (1995) Optimal offspring size in small litters. Evol. Ecol. 9, 57–63.Google Scholar
  21. Craig, S.F., Slobodkin, L.B. and Wray, G. (1995) The ‘paradox’ of polyembryony. Trends Ecol. Evol. 9, 371–372.Google Scholar
  22. Cruz, Y.P. (1981) A sterile defender morph in a polyembryonic hymenopterous parasite. Nature 294, 446–477.Google Scholar
  23. Cruz, Y.P. (1986) The defender role in the precocious larvae of Copidosomopsis tanytmemus (Encyrtidae, Hymenoptera). J. Exp. Zool. 237, 309–318.Google Scholar
  24. Dawydoff, C. (1959) Ontogenese des Annélides. In Traité de Zoologie, V,I (P. Grassé, ed.), pp. 594–686. Masson, Paris.Google Scholar
  25. de Beauchamp, P. (1961) Classe des Turbellariés. In Traité de Zoologie, IV,I (P. Grassé, ed.), pp. 35–212. Masson, ParisGoogle Scholar
  26. Esch, G.W. and Fernàndez, J.C. (1993). A Functional Biology of Parasitism. Chapman and Hall, London.Google Scholar
  27. Fernandez, M. (1909) Beiträge zur Embryologie der Gürteltiere. 1. Zur Keimblätterinversion und spezifischen Polyembryonie der Mulita (Tatusia hybrida Desm.) Morpholog. Jahrb. 39, 302–333.Google Scholar
  28. Fioroni, P. (1987) Allgemeine und vergleichende Embryologie der Tiere: Ein Lehrbuch. Springer-Verlag, Berlin.Google Scholar
  29. Galbreath, G.J. (1985) The evolution of monozygotic polyembryony in Dasypus. In The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas (G.G. Montgomery, ed.), pp. 243–246. Smithsonian Institute Press, Washington, DC.Google Scholar
  30. Gilbert, S.F. (1991) Developmental Biology, 3rd edn. Sinauer Associates, Sunderland, MA.Google Scholar
  31. Glenner, H. and Høeg, J.T. (1995) A new motile, multicellular stage involved in host invasion by parasitic barnacles (Rhizocephala). Nature 377, 147–150.Google Scholar
  32. Godfray, H.C.J. (1994) Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press, Princeton, NJ.Google Scholar
  33. Grbic, M., Ode, P.J. and Strand, M.R. (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360, 254–256.Google Scholar
  34. Hague, F.S. (1923) Studies on Sparganophilus eiseni. Smith. Trans. Am. Micr. Soc. 42, 1–42.Google Scholar
  35. Haig, D. (1993) Genetic conflicts in human pregnancy. Quart. Rev. Biol. 68, 495–532.Google Scholar
  36. Hardy, I.C.W. (1995a) Protagonists of polyembryony. Trends Ecol. Evol. 10, 179–180.Google Scholar
  37. Hardy, I.C.W. (1995b) Reply to ‘The “paradox” of polyembryony’. Trends Ecol. Evol. 10, 372.Google Scholar
  38. Hardy, I.C.W., Ode, P.J. and Strand, M.R. (1993) Factors influencing brood sex ratios in polyembryonic Hymenoptera. Oecologia 93, 343–348.Google Scholar
  39. Harmer, S.F. (1890) On the origin of the embryos in the ovicells of cyclostomatous Polyzoa. Proc. Cambridge Phil. Soc. 7, 48–55.Google Scholar
  40. Harmer, S.F. (1893) On the occurrence of embryonic fission in Cyclostomatous Polyzoa. Quart. J. Micr. Soc. 34, 199–241.Google Scholar
  41. Harmer, S.F. (1896) On the development of Lichenopora verrucaria Fabr. Quart. J. Micr. Sci. 39, 71–144 (pl. 7–10).Google Scholar
  42. Harmer, S.F. (1898) On the development of Tubulipora, and on some British and northern species of this genus. Quart. J. Micr. Sci. New. Ser. 41, 73–157.Google Scholar
  43. Hart, M.W. and Strathmann, R.R. (1995) Mechanisms and rates of suspension feeding. In Ecology of Marine Invertebrate Larvae (L.R. McEdwards, ed.), pp. 193–221. CRC Marine Science Series. CRC Press, Boca Raton, FL.Google Scholar
  44. Høeg, J.T. (1995) The biology and life cycle of the Rhizocephala (Cirripedia). J. Mar. Biol. Ass. UK 75, 517–550.Google Scholar
  45. Hughes, R.N. (1989) A Functional Biology of Clonal Animals. Chapman and Hall, London.Google Scholar
  46. Hummon, M.R. and Hummon, W.D. (1993) Gastrotricha. In Reproductive Biology of Invertebrates (K.G. Adiyodi and R.G. Adiyodi, eds), Vol. VI, Part A, Asexual Propagation and Reproductive Strategies. John Wiley, Chichester.Google Scholar
  47. Ivanova-Kasas, O.M. (1972) Polyembryony in insects. In Developmental Systems (S.J. Counce and C.H. Waddington, eds), Vol. 1, pp. 243–271. Academic Press, New York.Google Scholar
  48. Jaeckle, W.B. (1994) Multiple modes of asexual reproduction by tropical and subtropical sea star larvae: An unusual adaptation for genet dispersal and survival. Biol. Bull. 186, 62–71.Google Scholar
  49. Jeannel, R. (1951) Ordre des Strepsiptères. In Traité de Zoologie X,II (P. Grassé, ed.), pp. 1277–1299. Masson, Paris.Google Scholar
  50. Katheriner, L. (1904) Ueber die Entwicklung von Gyrodactylus elegans v. Nrdm. Zool. Jahrb. 70, 519–550.Google Scholar
  51. Kennedy, J.S. and Stroyan, H.L.G. (1959) Biology of aphids. Ann. Rev. Entomol. 4, 139–160.Google Scholar
  52. Kleinenberg, N. (1879) The development of the earthworm Lumbricus trapezoides Dugès. Quart. J. Micr. Sci. 19, 206–244.Google Scholar
  53. Koscielski, B. (1973) Polyembryony in Dendrocoelum lacteum O.F. Muller. In Biology of Turbellaria: Experimental Advances (Shapira et al., eds), pp. 103–107. MSS Information Corp., New York.Google Scholar
  54. Lack, D. (1947) The significance of clutch size. Ibis 89, 302–352.Google Scholar
  55. Levitan, D.R. (1995) The ecology of fertilization in free-spawning invertebrates. In Ecology of Marine Invertebrate Larvae (L.R. McEdwards, ed.), pp. 123–156. CRC Marine Science Series. CRC Press, Boca Raton, FL.Google Scholar
  56. Levitan, D.R. and Petersen, C. (1995) Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231.Google Scholar
  57. MacGillivray, I., Nylander, P.P.S. and Corney, G. (1975) Human Multiple Reproduction. W.B. Saunders, Philadelphia, PA.Google Scholar
  58. Marchal, P. (1898) Le cycle évolutif de l'Encyrtus fuscicolli. Société Entomologie de France Bull. 1898, 109–111.Google Scholar
  59. McLaren, A. (1982) The embryo. In Reproduction in Mammals 2: Embryonic and Fetal Development (C.R. Austin and R.V. Short, eds), pp. 1–25. Cambridge University Press, Cambridge.Google Scholar
  60. Moore, J. (1981) Asexual reproduction and environmental predictability in cestodes (Cyclophyllidea, Taeniidae). Evolution 35, 723–741.Google Scholar
  61. Mortensen, T.H. (1921) Studies of the Development and Larval Forms of Echinoderms. G.E.C. Gad, Copenhagen.Google Scholar
  62. Nénon, J.-P. (1983). La polyembryonie: reproduction par vrais jumeaux (Series Que sais-je?). Presses Universitaires de France, Paris.Google Scholar
  63. Newman, H.H. (1913) The natural history of the nine-banded armadillo of Texas. Am. Nat. 47, 513–539.Google Scholar
  64. Noble, E.R., Noble, G.A., Schad, G.A. and MacInnes, A.J. (1989) Parasitology: The Biology of Animal Parasites, 6th edn. Lea and Febiger, Philadelphia, PA.Google Scholar
  65. Noskiewicz, J. and Poluszynski, G. (1935). Embryologische Untersuchungen an Strepsipteren. II. Teil; Polyembryonie. Zoologica Poloniae, Lwów, 1, 53–94.Google Scholar
  66. Nowak, R.M. (1991) Walker's Mammals of the World, 5th edn, Vol. 1, pp. 525–535. Johns Hopkins University Press, Baltimore, MD.Google Scholar
  67. Ode, P.J. and Strand, M.R. (1995) Progeny and sex allocation decisions of the polyembryonic wasp Copidosoma floridanum. J. Animal Ecol. 64, 213–224.Google Scholar
  68. Parker, H.L. (1931) Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite of the European Corn Borer. US Department of Agriculture Technical Bulletin 230.Google Scholar
  69. Patterson, J.T. (1927) Polyembryony in animals. Quart. Rev. Biol. 2, 399–426.Google Scholar
  70. Penners, A. (1924) Doppelbildungen bei Tubifex rivulorum Lam. Zool. Jahrb. 41, 91–120.Google Scholar
  71. Raikova, E.V. (1973) Life cycle and systematic position of Polypodium hydriforme Ussov (Coelenterata), a cnidarian parasite of the eggs of Acipenseridae. Publ. Seto Marine Biological Laboratory 20, 165–174.Google Scholar
  72. Raikova, E.V. (1980) Morphology, ultrastructure and development of the parasitic larva and its surrounding trophamnion of Polypodium hydriforme Coelenterata. Cell Tissue Res. 206, 487–500.Google Scholar
  73. Reed, C.G. (1991) Bryozoa. In Reproduction of Marine Invertebrates. VI. Echinoderms and Lophophorates (A.C. Giese and J.S. Pearse, eds), pp. 85–245. Boxwood Press, Pacific Grove, CA.Google Scholar
  74. Robertson, A. (1903) Embryology and embryonic fission in the genus Crisia. Univ. Calif. (Berkeley) Publ. Zool. 1, 115–156.Google Scholar
  75. Ryland, J.S. (1970) Bryozoans. Hutchinson, London.Google Scholar
  76. Ryland, J.S. (1996) Polyembryony ‘paradox’: The case of cyclostomate Bryozoa. Trends Ecol. Evol. 11, 26.Google Scholar
  77. Shostak, S. (1993) Cnidaria. In Reproductive Biology of Invertebrates (K.G. Adiyodi and R.G. Adiyodi, eds), Vol. VI, Part A, Asexual Propagation and Reproductive Strategies, pp. 45–105. John Wiley, Chichester.Google Scholar
  78. Silvestri, F. (1906) Contribuzioni alla conoscenza biologica degli imenotteri parasiti. I. Biologia del Litomastix truncatellus (Dalm.) Bolletino del Laboratorio di Zoologia generale e agraria della P. Scuolo Superiore d'Agricoltura, Porciti 1, 17–64.Google Scholar
  79. Slifer, E.H. and Shulow, A. (1947) Sporadic polyembryony in grasshopper eggs. Ann. Ent. Soc. Am. 40, 652–655.Google Scholar
  80. Slobodkin, L.B. (1954) Population dynamics in Daphnia obtusa Kurz. Ecol. Monogr. 24, 69–88.Google Scholar
  81. Slobodkin, L.B. (1980) Growth and Regulation of Animal Populations, 2nd edn. Dover Publications, New York.Google Scholar
  82. Slobodkin, L.B. and Bossert, P.E. (1991) The freshwater cnidaria-or coelenterates. In Ecology and Classification of North American Freshwater Invertebrates (J.H. Thorp and A.P. Covich, eds), pp. 125–142. Academic Press, New York.Google Scholar
  83. Storrs, E.E. (1967) Individuality in monozygotic quadruplets of the armadillo, Dasypus novemcinctus. PhD Dissertation, University of Texas.Google Scholar
  84. Strand, M.R. (1989a) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomologia Experimentalis et Applicata 50, 37–46.Google Scholar
  85. Strand, M.R. (1989b) Oviposition behavior and progeny allocation of the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae). J. Insect Behav. 2, 355–369.Google Scholar
  86. Strand, M.R. (1989c) Clutch size, sex ratio, and mating by the polyembryonic encyrtid Copidosoma floridanum. Florida Entomologist 72, 32–42.Google Scholar
  87. Strand, M.R., Johnson, J.A. and Dover, B.A. (1990) Ecdysteroid and juvenile hormone esterase profiles of Trichoplusia ni parasitized by the polyembryonic wasp Copidosoma floridanum. Arch. Insect Biochem. Physiol. 13, 41–51.Google Scholar
  88. Strand, M.R., Baehrecke, E.H. and Wong, E.A. (1991a) The role of host endocrine factors in the development of polyembryonic parasitoids. Biological Control 1, 144–152.Google Scholar
  89. Strand, M.R., Goodman, W.G. and Baehrecke, E.H. (1991b) The juvenile hormone titer of Trichoplusia ni and its potential role in embryogenesis of the polyembryonic wasp Copidosoma floridanum. Insect Biochem. 21, 205–214.Google Scholar
  90. Strathmann, R.R. (1985) Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Ann. Rev. Ecol. Syst. 16, 339–361.Google Scholar
  91. von Jhering, H. (1885) Über die Fortpflanzung der Gürtelthiere. Sitzungsberichte d. Koenigl. Preuss. Akad. d. Wissenschaften zu Berlin 1885, 1051–1053.Google Scholar
  92. von Jhering, H. (1886) Ueber ‘Generationswechsel’ bei Säugethieren. Archiv für Anat. u. Physiol., Physiol. Abthlg. 1886, 433–450.Google Scholar
  93. Voukassovitch, P. (1927) Observations biologiques sur le Macrocentrotus abdominalis Fab.; braconide parasite. Compte Rendu des Seances de la Societe de Biologie 96, 379–381.Google Scholar
  94. Welch, P.S. (1921) Bifurcation in the embryos of Tubifex. Biol. Bull. 14, 188–202.Google Scholar
  95. Wetzel, R.M. (1985) Taxonomy and distribution of armadillos, Dasypodidae. In The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas (G.G. Montgomery, ed.), pp. 23–46. Smithsonian Institute Press, Washington, DC.Google Scholar
  96. Willadsen, S.M. (1979) A method for culture of micromanipulated sheep embryos and its use to produce monozygotic twins. Nature 277, 298–300.Google Scholar
  97. Williams, G.C. (1966) Adaptation and Natural Selection. Princeton University Press, Princeton, NJ.Google Scholar
  98. Williams, G.C. (1975) Sex and Evolution. Princeton University Press, Princeton, NJ.Google Scholar
  99. Wray, G.A. and Raff, R.A. (1991) The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol. 6, 45–50.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

  • SEAN F. Craig
    • 1
  • LAWRENCE B. Slobodkin
  • GREGORY A. Wray
  • CHRISTIANE H. Biermann
  1. 1.Department of Ecology and EvolutionState University of New York at Stony BrookStony BrookUSA

Personalised recommendations