Skip to main content
Log in

Photochemical kinetics and mechanism of the reaction of octacyanomolybdate(IV) and octacyanotungstate(IV) with pyrazine

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of complexation of activated octacyanomolybdate(IV) and octacyanotungstate(IV), generated by the absorption of a quantum of light with the aromatic heterocyclic ligand, pyrazine have been investigated. Each complex has a strong absorption band in the visible region which is assigned as a CTTL (charge-transfer to ligand) transition, being more pronounced in the [W(CN)8]4− system due to rapid deactivation, large back bonding stabilization energy and effective orbital mixing in the case of 5d orbitals with those of pyrazine. The CTTL transition leads to the substitution of pyrazine in 1:2 stoichiometry, showing pyrazine to behave as a unidentate ligand. On the basis of the decrease of rate constant and quantum yield values on increasing metal concentration, and the increase in value on increasing ligand and OH− concentration, an associative mechanism is proposed. In presence of excess of ligand, the observed rate law is:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Creutz and H. Taube, J. Am. Chem. Soc., 91, 3988 (1969).

    Article  CAS  Google Scholar 

  2. A. V. Kaneke, G. M. Tom and H. Taube, Inorg. Chem., 17, 7 (1978).

    Google Scholar 

  3. D. A. Edwards, G. Uden, W. S. Mialki and R. A. Walton, Inorg. Chim. Acta, 40, 25 (1980).

    Article  CAS  Google Scholar 

  4. K. H. Pannell and R. Iglesias, Inorg. Chim. Acta, 33, L161 (1979).

    Article  CAS  Google Scholar 

  5. R. Ernhoffer and R. E. Shepherd, J. Chem. Soc. Commun., 859 (1978).

  6. J. L. Alistan, A. W. Adamson, M. S. Wrighton, H. B. Abrahamson and D. L. Morse, Inorg. Chem., 98, 4105 (1976).

    Google Scholar 

  7. T. G. Dunne and J. K. Hurst, Inorg. Chem., 19, 1152 (1980).

    Article  CAS  Google Scholar 

  8. H. E. Toma and J. M. Malin, Inorg. Chem., 12, 2080 (1973).

    Article  CAS  Google Scholar 

  9. C. R. Johnson and R. E. Shepherd, Inorg. Chem., 22, 2439 (1983).

    Article  CAS  Google Scholar 

  10. S. I. Ali and H. Kaur, J. Photochem. Photobiol. A, 68, 147 (1992).

    Article  CAS  Google Scholar 

  11. S. I. Ali and H. Kaur, J. Photochem. Photobiol. A, 61, 183 (1991).

    Article  CAS  Google Scholar 

  12. S. I. Ali and A. Kumar, J. Photochem. Photobiol. A, 72, 29 (1993).

    Article  CAS  Google Scholar 

  13. L. G. Leipoldt, L. D. C. Bok and P. G. Colliers, Z. Anorg. Allgem. Chem., 409, 343 (1974); 407, 250 (1974).

    Article  CAS  Google Scholar 

  14. J. G. Calvert and J. N. Pitts, Photochemistry, Wiley, New York, 1966, pp. 780, 786, 796.

    Google Scholar 

  15. P. Job, Ann. Chim., 18, 113 (1928); 26, 79 (1936).

    Google Scholar 

  16. E. Hurry and D. C. Manning, J. Am. Chem. Soc., 72, 4488 (1950).

    Article  Google Scholar 

  17. W. L. Waltz, A. W. Adamson and P. D. Fleischauer, J. Am. Chem. Soc., 89, 3923 (1967).

    Article  CAS  Google Scholar 

  18. M. Shirom and Y. Siderer, J. Chem. Phys., 57, 1013 (1972).

    Article  CAS  Google Scholar 

  19. A. W. Adamson, J. D. Welker and M. Vulpe, J. Am. Chem. Soc., 72, 4030 (1950).

    Article  CAS  Google Scholar 

  20. E. L. Goodenow and C. S. Garner, J. Am. Chem. Soc., 771, 5268 (1955).

    Article  Google Scholar 

  21. C. R. Johnson and R. E. Shepherd, Inorg. Chem., 22, 1117 (1983).

    Article  CAS  Google Scholar 

  22. H. E. Toma and J. M. Malin, Inorg. Chem., 12, 1039 (1973).

    Article  CAS  Google Scholar 

  23. C. R. Johnson and R. E. Shepherd, Inorg. Chem., 22, 2439 (1983).

    Article  CAS  Google Scholar 

  24. J. Nasielski and A. Colas, Inorg. Chem., 17, 327 (1978).

    Article  Google Scholar 

  25. M. Wrighton, G. S. Hammond and H. B. Gray, J. Am. Chem. Soc., 93, 4336 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S.I., Majid, K. Photochemical kinetics and mechanism of the reaction of octacyanomolybdate(IV) and octacyanotungstate(IV) with pyrazine. Transition Metal Chemistry 22, 309–312 (1997). https://doi.org/10.1023/A:1018437129494

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018437129494

Keywords

Navigation