Skip to main content
Log in

Synchrotron-radiated X-ray and neutron diffraction study of native cellulose

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Precise determination of d-spacings and compositional ratio of cellulose Iα and Iβ in various native cellulose samples was successfully carried out by synchrotron-radiated X-ray diffraction and time-of-flight (TOF) neutron diffraction from quasi-powder specimens. X-ray diffraction peaks were separated by the deconvolution method using six types of profile function: Gaussian, Lorentzian, intermediate Lorentzian, modified Lorentzian, pseudo-Voigt, and Pearson VII. In terms of R-factors, the pseudo-Voigt function gave the best fit with the observation, and was used for determination of d-spacings. The numerical results for Valonia cellulose were: dIα (1 0 0) = 0.613 nm; dIβ (1 1 0) = 0.603 nm; dIβ (1 1 0) = 0.535 nm; dIα (0 1 0) = 0.529 nm; Iα content = 0.65. The differences determined between dIα (1 0 0) and dIβ (1 1 0) and between dIβ (1 1 0) and dIα (0 1 0) were similar to those previously reported. Comparison between unresolved peaks for the two types of cellulose samples revealed a small but definite difference between dIα (1 1 0) and dIβ (2 0 0). The TOF neutron diffractometry using deuterated samples confirmed this difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmed, A. U., Ahmed, N., Aslam, J., Butt, N. M., Khan, Q. H. and Atta, M. A. (1976) Neutron diffraction studies of the unit cell of cellulose II. J. Polym. Sci. Polym. Lett. Ed. 14, 561–564.

    Article  CAS  Google Scholar 

  • Alexander, L. E. (1979) X-ray Diffraction Methods in Polymer Science. Humington, New York: Robert E. Kreiger Publishing Co., pp. 423–424.

    Google Scholar 

  • Atalla, R. H. and VanderHart, D. L. (1984) Native cellulose. A composite of two distinct crystalline forms. Science 223, 283–285.

    Article  CAS  Google Scholar 

  • Beg, M. M., Aslam, J., Khan, Q. H., Butt, N. M., Rolandson, S. and Ahmed, A. U. (1974) Neutron diffraction studies of the unit cell of cellulose I. J. Polym. Sci. Polym. Lett. Ed. 12, 311–318.

    Article  CAS  Google Scholar 

  • Debzi, E. M., Chanzy, H., Sugiyama, J., Tekely, P. and Exoffier, G. (1991) The Iα →Iβtransformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24, 6816–6822.

    Article  CAS  Google Scholar 

  • Gardner, K. H. and Blackwell, J. (1974) The structure of native cellulose. Biopolymers 13, 1975–2001.

    Article  CAS  Google Scholar 

  • Honjo, G. and Watanabe, M. (1958) Examination of cellulose fiber by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181, 326–328.

    Article  CAS  Google Scholar 

  • Horii, F., Hirai, A. and Kitamura, R. (1987a) CP/MAS 13C NMR spectra of the crystalline components of native celluloses. Macromolecules 20, 2117–2120.

    Article  CAS  Google Scholar 

  • Horii, F., Yamamoto, H., Kitamaru, R., Tanahashi, M. and Higuchi, T. (1987b) Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20, 2946–2949.

    Article  CAS  Google Scholar 

  • Meyer, K. H. and Misch, L. (1937) Position des atomes dans le nouveau modele spatial de la cellulose. Sur la constitution de la partie cristallisée de la cellulose VI. Helv. Chim. Acta. 20, 232–244.

    Article  CAS  Google Scholar 

  • Nagaoka, T. and Oyanagi, Y. (1980) Program System SALS for Nonlinear Least-Square Fitting in Experimental Sciences. In Recent Developments in Statistical Inference and Data Analysis (K. Matusita, ed.). North Holland Publishing Co., pp. 221–225.

  • Okano, T. and Koyanagi, A. (1986) Structural variation of native cellulose related to its source. Biopolymers 25, 851–861.

    Article  CAS  Google Scholar 

  • Sarko, A. and Muggli, R. (1974) Packing Analysis of Carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7, 486–494.

    Article  CAS  Google Scholar 

  • Sugiyama, J., Okano, T., Yamamoto, H. and Horii, F. (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23, 3196–3198.

    Article  CAS  Google Scholar 

  • Sugiyama, J., Persson, J. and Chanzy, H. (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24, 2461–2466.

    Article  CAS  Google Scholar 

  • Sugiyama, J., Vuong, R. and Chanzy, H. (1991b) Electron diffraction study of the two crystalline phases occurring in native celluloses from an algal cell wall. Macromolecules 24, 4168–4175.

    Article  CAS  Google Scholar 

  • Toraya, H. (1986) Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffractometer data. J. Appl. Cryst. 19, 440–447.

    Article  CAS  Google Scholar 

  • Uno, R., Ozawa, H., Yamanaka, T., Morikawa, H., Ando, M., Ohsumi, K., Nukui, A., Yukino, K. and Kawasaki, T. (1988) Powder diffractometry at the Tsukuba Photon Factory. Aust. J. Phys. 41, 133–144.

    Article  CAS  Google Scholar 

  • VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solidstate 13C NMR. Macromolecules 17, 1465–1472.

    Article  CAS  Google Scholar 

  • Wada, M., Sugiyama, J. and Okano, T. (1993) Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. J. Appl. Polym. Sci. 49, 1491–1496.

    Article  CAS  Google Scholar 

  • Wada, M., Sugiyama, J. and Okano, T. (1994) The monoclinic phase is dominant in wood cellulose. Mokuzai Gakkaishi 40, 50–56.

    CAS  Google Scholar 

  • Wada, M., Okano, T., Sugiyama, J. and Horii, F. (1995a) Characterization of tension and normally lignified wood cellulose in Populus maximowiczii. Cellulose 2, 223–233.

    Article  CAS  Google Scholar 

  • Wada, M., Sugiyama, J. and Okano, T. (1995b) Two crystalline phase (Iα/Iβ) system of native celluloses in relation to plant phylogenesis. Mokuzai Gakkaishi 41, 186–192.

    CAS  Google Scholar 

  • Watanabe, N., Asano, H., Iwasa, H., Sato, S., Murata, H., Karahashi, K., Tomiyoshi, S., Izumi, F. and Inoue, K. (1987) High resolution neutron powder diffractometer with a solid methane moderator at pulsed spallation neutron sources. Jpn. J. Appl. Phys. 26, 1164–1169.

    Article  CAS  Google Scholar 

  • Wellard, H. J. (1954) Variation in the lattice spacing of cellulose. J. Polym. Sci. 13, 471–476.

    Article  CAS  Google Scholar 

  • Yamamoto, H., Horii, F. and Odani, H. (1989) Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22, 4130–4132.

    Article  CAS  Google Scholar 

  • Yamamoto, H. and Horii, F. (1993) CP/MAS 13C NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26, 1313–1317.

    Article  CAS  Google Scholar 

  • Yamamoto, H. and Horii, F. (1994) In Situ crystallization of bacterial cellulose I. Influence of polymeric additives, stirring and temperature on the formation celluloses Iα and Iβas revealed by cross polarization/magic angle spinning (CP/MAS) 13C NMR spectroscopy. Cellulose 1, 57–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WADA, M., OKANO, T. & SUGIYAMA, J. Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4, 221–232 (1997). https://doi.org/10.1023/A:1018435806488

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018435806488

Navigation