Skip to main content
Log in

Mechanism of hydrogen oxidation on a platinum-loaded gas diffusion electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanism of hydrogen oxidation on a platinum-loaded gas-diffusion electrode has been investigated. Experimental potential–current curves, especially in the low overpotential range, have been measured for H2–N2 mixtures with a small content of hydrogen and for pure H2. Theoretical relations have also been presented. Comparing the experimental and theoretical relations, it is concluded that the hydrogen oxidation occurs according to the Volmer–Tafel mechanism. The reactivity of the electrode has a large effect on the kinetic parameters for hydrogen oxidation. The limiting current is determined by diffusion of hydrogen for a very reactive gas diffusion electrode and by the Tafel reaction for a gas diffusion electrode with a low reactivity. The transfer coefficient for the Volmer reaction αV is 0.5 and i0,V/i0,T ≤ 0.1 for a very reactive gas diffusion electrode. αV increases and i0,V/i0,T ratio decreases with decreasing reactivity of the gas diffusion electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Vetter, `Elektrochemische Kinetik', Springer Verlag, Berlin (1961).

    Google Scholar 

  2. M. W. Breiter, `Electrochemical Processes in Fuel Cells', Springer Verlag, Berlin (1969).

    Google Scholar 

  3. A. J. Appleby, M. Chemla, H. Kita and G. Bronoël, in `Encyclopedia of Electrochemistry of the Elements' vol. IX, part A (edited by A. J. Bard), Marcel Dekker, New York (1982), pp. 384–97.

    Google Scholar 

  4. V. V. Sobol, A. A. Dmitrieva and A. N. Frumkin, Soviet Electrochem. 3 (1976) 928.

    Google Scholar 

  5. J. A. Harrison and Z. A. Khan, J. Electroanal. Chem. 30 (1971) 327.

    Google Scholar 

  6. S. Schuldiner, J. Electrochem. Soc. 115 (1968) 386.

    Google Scholar 

  7. K. J. Vetter and D. Otto, Z. Electrochem. 60 (1956) 1072.

    Google Scholar 

  8. M. Volmer and H. Wick, Z. Physik Chem. 172A (1955) 429.

    Google Scholar 

  9. W. Roiter and J. S. Polujan, J. Phys. Chem. USSR 7 (1936) 775.

    Google Scholar 

  10. W. Vogel, J. Lundquist, P. Ross and P. Stonehart, Electrochim. Acta 20 (1975) 79.

    Google Scholar 

  11. P. Stonehart and P. N. Ross, Electrochim. Acta 21 (1976) 441.

    Google Scholar 

  12. J. J. T. T. Vermeijlen and L. J. J. Janssen, J. Appl. Electrochem. 23 (1993) 26.

    Google Scholar 

  13. J. Horiuti, T. Keii and K. Hirota, J. Res Inst. Catalysis, Hokkaido University 2 (1950-53) 1.

    Google Scholar 

  14. J. O'M. Bockris and S. Srinivasan, Electrochim. Acta 9 (1964) 31.

    Google Scholar 

  15. J. J. T. T. Vermeijlen, Eindhoven, PhD thesis (1994).

  16. M. Enyo, B. E. Conway, J. O'M. Bockris, E. Yeager, S. U. M. Khan and R. E. White (eds), `Comprehensive Treatise of Electrochemistry', Vol. 7, Plenum Press, New York and London (1983).

    Google Scholar 

  17. [17] J. J. T. T. Vermeijlen and L. J. J. Janssen, J. Appl. Electrochem. 23 (1993) 1237.

    Google Scholar 

  18. M. Böld and M. Breiter, Z. Electrochem. 64 (1960) 897.

    Google Scholar 

  19. Zh. L. Vert, J. A. Mosevich and J. Tverdovsky, Doklady Akad. Nuak S.S.S.R. 140 (1961) 149.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VERMEIJLEN , J.J.T.T., JANSSEN , L.J.J. & VISSER , G.J. Mechanism of hydrogen oxidation on a platinum-loaded gas diffusion electrode. Journal of Applied Electrochemistry 27, 497–506 (1997). https://doi.org/10.1023/A:1018434325530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018434325530

Keywords

Navigation